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Chapter 1 

 

Introduction 
 

 

1.1 Overview 
 

A number of attempts to perform a numerical analysis of the ground motion produced in a 

three-dimensional continuum by a rupture propagating along a pre-existing discontinuity surface, 

i.e. a fault in Seismology and Earthquake Engineering, have been described in the literature in the 

last few years. The numerical simulation of ground motion based in the dynamic of the spontaneous 

rupture propagation of the fault (dynamic models) needs to solve the elastodynamic equation of 

motion of the continuum coupled to frictional sliding (Mode II and III in fracture mechanics) on a 

prescribed crack plane. In the present thesis, the attractive feature in the problem under 

consideration is the possibility of introducing internal cracks (mode I) that propagates under tensile 

stress as a consequence of the dynamic process of the shear slip propagation. In this context, the 

numerical simulation of the dynamic rupture process of an earthquake involving the three basic 

modes (Mode I, II and III) is considered. Since we accept that the rupture process of an earthquake 

is a fracture mechanics problem, the superposition of the three basic modes (Mode I, II and III) is 

sufficient to describe the most general case of the dynamic crack propagation of an earthquake. In 

the present formulation four aspects of the problem deserve independent consideration: 

(a) Modeling of the solid continuum and seismic wave propagation. 

(b) Artificial boundaries of the modeled volume to represent the (semi) infinite extent of the 

continuum. 
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(c) Definition of the stress change on the fault surface during shear rupture, or, alternatively, 

specification of so-called fault constitutive laws in conjunction with an initial stress state, in which 

case the variation of slip and velocity of rupture propagation along the fault are determined in the 

analysis.  

(d) Definition of the constitutive relation to open tensile cracks as a consequence of the shear 

slipping. 

The problem is resolved modeling the first item, by way of introduction to the more 

complex topics included in (b), (c) and (d). 

The simplest assumption concerning the mechanical behaviour of the material is to admit 

linear elasticity, jointly with linear viscous damping. Those hypotheses appear to be sufficient to 

account for the response of sound rock to seismic excitation and are common to most procedures 

proposed in the literature. For analysis of general problems, four schemes may be mentioned as the 

best developed alternatives: (1) the finite-element method (FEM), (2) the boundary-element method 

(BEM), (3) the so-called staggered-grid Finite-Difference Method (FDM) and (4) the discrete-

element method  (DEM). The FEM and BEM have been applied to solve problems in various fields 

of science and technology. In fact, extensive use of the former may be found in the study of soil-

structure interaction effects in seismic analysis, as described, for instance, by Wolf (1997) and in 

dynamic rupture process of earthquakes (e.g. Fukuyama and Madariaga, 1998). The FDM is widely 

used in seismology to the ground motion simulation and shear rupture propagation (see, for 

example, Madariaga, 1976, Graves 1996, Olsen et al.1997, Inoue and Miyatake 1998, Madariaga et 

al., 1998, Pitarka 1999). The DEM is widely employed in engineering to designate lumped mass 

models in a truss arrangement, as opposed to FEM (Finite Element) models that may also consist of 

lumped masses, but normally require to mount a full stiffness matrix for response determination. 

The application of the DEM to the ground motion and dynamic rupture simulation is new, it was 

introduced by Dalguer (2000), Dalguer et al (2001 a,b) using a 2D model. The 3D model is used for 

the first time in the present thesis, being one of the objective of this work, that is, introduce the 

DEM in 3D in the scientific community of Sismology and earthquake Engineering. 

Various algorithms have been developed to implement all these techniques mentioned above, the 

question of which one is the best technique remains, this subject is always a debate because each 

method has its merits and pitfalls. But for the problem solved in the present thesis, certainly the 

advantage of the DEM compared to the others methods (FEM, BEM, FDM) is the facility of 

introducing internal tensile cracks with little computational effort and without increasing the 

number of degrees of freedom of the system. 
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 The study of the dynamic rupture process is very important for the simulation of the ground 

motion. Several attempts to perform numerical analyses of the dynamic rupture processes of a fault 

have been described in the literature. The pioneering work of Kostrov (1966) simulated the 

spontaneous propagation of an anti-plane shear crack. Das and Aki (1977) and Andrews (1976), 

using the slip weakening model as a friction law of the fault, simulated spontaneous rupture 

propagation of an in-plane shear crack. Subsequently, the rupture process of the fault was simulated 

with more sophisticated models (e.g., Mikumo and Miyatake, 1978; Virieux and Madariaga, 1982; 

Day, 1982a,b; Cochard and Madariaga, 1994, Fukuyama and Madariaga, 1998; Madariaga et al., 

1998; Inoue and Miyatake, 1998). Dynamic models are frequently used to study the physics of 

earthquakes, as related to the rupture process of the fault. Although few efforts were devoted to the 

simulation of ground motion based on dynamic models, some recent contributions should be cited. 

Olsen et al., (1997) simulated the rupture process and near field ground motion of the 1992 Landers 

(California) earthquake using a finite difference method in the frequency range. Inoue and 

Miyatake (1998) simulated theoretical strong ground motion generated from the rupture process on 

a shallow strike-slip fault using a 3D finite-difference method, Dalguer et al (2001 a,b), using a 

simplified 2D model, simulated the 1999 Chi-Chi earthquake and near source ground motion. 

On the other hand, in the study of the seismic wave propagation in 3D elastodynamic problem with 

a pre-existing fault, the slip on the fault surface usually are specified as a function or it is 

represented by the moment-tensor source formulation that uses stress components (e.g., Frankel, 

1993; Coutant et al., 1995; Olsen et al., 1995; Graves 1996; Pitarka 1999). The moment-tensor 

source formulation uses equivalent body forces that are appropriately added at each point 

corresponding to the source location. Because the motion on the fault surface is specified, these 

methods are called kinematic models. For the simulation of strong ground motion using these 

kinematic models, the 3D FDM is widely used (e.g., Frankel and Vidade, 1992; Yomigida and 

Etgen, 1993; Pitarka and Irikura, 1996; Pitarka et al., 1998; Graves, 1998). But the inconvenient of 

these models is that the slip function on the fault is specified, it means that they do not take in to 

consideration the physic of the rupture process, that is, the frictional level of the surface is 

neglected, violating the natural development of the spontaneous rupture propagation that strongly 

depend of the initial stress level distribution and the law constitutive relation along the fault. 

In the present thesis the numerical solution is obtained solving the elastodynamic motion 

coupled to frictional sliding on a prescribed fault plane. With this procedure, the dynamic rupture 

propagation of the fault is simulated as well as the wave radiated from fault, making possible the 

simulation of the ground motion based in a dynamic model. The attractive feature in the problem 

under consideration is the possibility of introducing internal new cracks that propagates under 
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tensile stress as a consequence of the dynamic process of the shear slip propagation. For the shear 

rupture propagation the simple slip-weakening model is used as a friction law on the pre-existing. 

And for the new tensile cracks, the fracture will occur, following the classical Griffith theory, when 

the critical value of tensile fracture surface energy has been reached. The firs step in the problem is 

the estimation of the geometry of the pre-existing fault and the dynamic parameters, such us stress 

drop, strength excess and critical slip. For a real earthquake, these parameters could be recovered 

from the results of waveform inversion, it will be explained later. In the second step a shear 

dynamic rupture process is simulated assuming that the shear slip take place only on the pre-

existing and the tensile stress concentrations resulting from shear slip will cause the new cracks that 

will propagates away from the pre-existing fault. As knowledge by the author, the present work 

shows the first numerical simulation in 3D of the generation of tensile cracks during the shear 

dynamic rupture process of a pre-existing fault. Tentative simulations in 2D were presented by 

Yamashita (2000) using a dynamic model and Vermilye and Scholz (1998) and Reches and 

Lockner (1994) using a quasi-static analysis. 

The study of wave propagation and strong-ground motion simulation based in dynamic 

rupture process is more realistic and contributes to a better understanding of the physics of 

earthquakes and the effects of the dynamic process on the ground motion. In the recent earthquakes 

of Kobe 1995, Kocaeli 1999, Chi-chi 1999, that caused big damage in urban centers, was observed 

complicated damage pattern and near source ground motion distribution that could be due to the 

characteristics of the dynamic rupture process of the fault. In the recent work of Dalguer et al 

(2001a,b), in which they used a simplified 2D model to simulate the 1999 Chi-Chi earthquake, was 

showed  that the ground motion near the fault of the Chi-Chi earthquake could been strongly 

affected mainly by dynamic source parameters. In this context, the study of the dynamic rupture 

process and its effect on the ground motion are the fundamental importance for the assesment of 

seismic hazard and disaster prevention purpose. 

 

 

1.2 Objective of the thesis 
 

-Develop a dynamic model to simulate the rupture process of the fault and near source ground 

motion. 

-Investigate numerically the formation of new cracks during an earthquake. 

-Introduce the 3D DEM in the scientific community of Sismology and earthquake Engineering 
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-Applied the model for the simulation of real earthquakes in order to try to explain some of the 

characteristics of the fault rupture, crack formation, near source ground motion and damage pattern 

caused by real earthquakes. 

 

 

1.3 Organization of the thesis 
 

In chapet 1, an over view of the problem of dynamic rupture and ground motion simulation 

in seismology, the general characteristics of the formulation proposed and the objective of the 

thesis are presented. In chapter 2, the application and formulation of the Discrete Element Method 

(DEM), numerical technique used in the thesis, is described. In chapter 3, the definition of the 

problem is set, that is, the boundary conditions along the pre-existing fault as well as the artifitial 

boundaries needed for the discretization of the (semi) infinite of the continuum are specified. The 

constitutive relation that governs the shear dynamic rupture and tensile cracks propagation are also 

formulated. In chapter 4, the validity of the DEM in 2D and 3D for the simulation of shear dynamic 

rupture process is presented, for this purpose, theoretical problems of shear cracks propagation are 

solved and compared with numerical results presented in the specialized literature. In Chapter 5, the 

methodology used for the estimation of the dynamic parameters needed for the 3D dynamic shear 

rupture propagation of a real earthquake is formulated. These parameters are the stress drop, 

strength excess and critical slip distribution along the fault. The formulation is applied to the 2000 

Tottori earthquake. The results, the stress changes distribution on the fault, are associated to the 

aftershock and foreshock distribution of the Tottori earthquake. In chapter 6 and 7, theoretical 

problems of shear dynamic rupture and tensile cracks propagation for the 2D and 3D model 

respectively are simulated. For the 2D problems, the analysis is concentrated in the investigation of 

the effects of the dynamic parameters (strength excess and critical slip) on the near source ground 

motion of dipping faults that breaks the free-surface. For the 3D problems, the effects of the tensile 

cracks generation on the near source ground motion and rupture process is analyzed. In Chapter 8, 

the formulation proposed is applied to the 2000 Tottori earthquake. The ground motion simulation 

as well as the cracks originated during the shear slipping are analyzed and compared with 

observations. Finally, in Chapter 9, the main conclusions of the current study are summarized. 
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Chapter 2 

 

The Discrete Element Method (DEM) 
 

 

2.1 Introduction 
 

The DEM is widely employed in engineering to designate lumped mass models in a truss 

arrangement, as opposed to FEM (Finite Element) models that may also consist of lumped masses, 

but normally require to mount a full stiffness matrix for response determination. The term has also 

been used for models of solids consisting of assemblies of discrete elements, such as spheres in 

elastic contact, employed in the analysis of perforation or penetration of concrete or rock. It should 

be noted that the designation Lattice Models, common in Physics, may be more adequate, although 

it omits reference to a fundamental property of the approach, which is the lumped-mass 

representation. In the present DEM formulation, orthotropic solids are represented by a three 

dimensional periodic truss-like structure using cubic elements as shown in Figure 2.1. This model 

is based on earlier developments in aeronautical engineering in which, for purposes of structural 

analysis it is often necessary to establish the equivalence between truss-like structural systems and 

a continuous medium. Nayfeh and Hefsy (1978) generated equivalent continuum elastic properties 

for the three-dimensional truss-like structures using an arrangement of two kinds of models, the 

octaetruss and cubic elements. On the other hand, Hayashi (1982), using the same formulation, 

developed the study in opposite direction, that is, generate the equivalent three-dimensional truss-

like structures for a real continuum using cubic elements. This method leads to results that 

converge to solutions for a linear elastic continuum in dynamic problems. Riera and Rocha (1991) 

used the approach in fracture studies, Doz and Riera (1995) employed the method to model the 
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stick-and-slip motion along friction surfaces, Dalguer et al. (1999) evaluated the foreshock and 

periodicity of earthquakes and Dalguer et al (2001 a,b), using a simplified 2D approach, modeled a 

fault dynamic rupture using the slip weakening friction model to simulate the rupture process of the 

1999 Chi-Chi (Taiwan) earthquake. A more extensive application of the DEM in 2D, for 

seismology purpose, could be found in Dalguer (2000). Also Mora and Place (1994), Shi et al. 

(1998), Morgan (1999), Morgan and Boettcher (1999) and Rimal (1992) used a 2D lattice model, 

also called Distinct Element Method similar to the DEM, to simulate dynamic rupture of 

earthquake faulting. 
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Figure 2.1. Numerical model used for the dynamic simulation (DEM): (a) Basic cubic module, (b) 

generation of prismatic body for 3D model and (c) representation of a plane strain state (no z 

displacements) for 2D model. 
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2.2 Formulation of the present DEM 
 

The Discrete Element Method (DEM) models any orthotropic elastic solid. It is constructed 

by a three dimensional periodic truss-like structures using cubic elements as shown in Figure 2.1. 

Nayfeh and Hefsy (1978) established the equivalence requirements between the cubic arrangement 

shown in Figure 2.1 and an orthotropic elastic medium. In case of an isotropic elastic material, the 

cross-sectional axial stiffness of the longitudinal bars in the equivalent discrete model is given by 

(Riera and Rocha,1991): 

 
2xEAEn ∆= φ      (bar length = ∆x)                                             (2.1) 

 

while for the diagonal bars 

3
2

2xEAEd
∆

= δφ     (bar length = 
2

3 x∆ )                                      (2.2) 

 

 

where for approximately isotropic solids, i.e. solids with equal stiffness in the three orthogonal 

directions, φ=(9+8δ)/(18+24δ), δ=9ν(4-8ν), ν is the Poisson’s ratio and E is the Young’s modules 

of the material. For other situations, for example layered (orthotropic) rocks, the above constants 

take on other values (See Nayfeh and Hefsy, 1978). It should be stressed that no lattice or truss-like 

model can exactly represent a locally isotropic continuum, and for that matter it can also be argued 

that no locally isotropic continuum exists. Isotropy in solids is a bulk property that reflects the 

random distribution of the orientation of constituent elements. Details of the calculation of the 

equivalent cross-sectional axial stiffness of the normal (AEn ) and diagonal (AEd) elements for a 

cubic lattice array given by equation (2.1) and (2.2) respectively are presented in Appendix . 

In the discrete dynamic model, masses are concentrated at nodal points. As shown in Figure 2.1a, 

solids are represented as an array of normal and diagonal bars linking lumped nodal masses.  

 The uniaxial elastic forces, Fe, acting along the bars, are computed using the cross-sectional 

axial stiffness given by Equation (2.1) or (2.2) 

 

jjj AEFe ε=                                                             (2.3) 
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where ε is the axial deformation of the bar j (j=n or d, normal or diagonal bar respectively). The 

representation of the elastic forces in the form given by Equation (2.3) is very convenient to 

simulate tensile cracks, as will later be explained in chapter 3, item 3.5. The dynamic analysis is 

performed using explicit numerical integration in the time domain. At each step of integration a 

nodal equilibrium represented by equation (2.4) is solved by the central finite differences scheme. 

 

iii fucum =+ &&&                                                               (2.4) 

 

where m denotes the nodal mass, c the damping constant, u ,  a component, velocity and 

acceleration respectively of the nodal coordinates vector, and f

i& iu&&

i a component of the resultant forces 

at one nodal point including elastic, external and frictional forces in direction i of the motion. In the 

current model, for the simulation of the dynamic rupture process of a pre-existing fault, only the 

nodal points that coincide with the pre-existing fault, once it breaks, are under frictional force 

governed by any predefined friction law. The damping constant c was assumed to be proportional 

to the rigidity (k) of the bars of every cubic element, that is c= dfk, where df  was assumed to be 

0.005. It is approximately a critical damping ratio (ξ) less or equal to 0.045. 

Equation (2.4) represents the equation of motion of a discrete point in the continuum. When 

this point is on the pre-existing fault, the fault parallel component of the resultant force (fi) is 

governed by the constitutive relation on the fault. 
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Chapter 3 

 

Definition of the Problem 
 

 

3.1 Introduction 
 

Dynamic simulation of rupture processes during earthquakes is usually performed under the 

assumption that only shear slip (Mode II and/or III) occurs (e.g., Andrews, 1976; Day, 1982; Olsen 

et al., 1997; Fukuyama and Madariaga, 1998; Harris and Day, 1999). This is widely accepted in the 

study of earthquakes because this phenomenon may be considered to be a dynamically running 

shear crack (e.g., Scholz, 1990). However, it is well known that the rupture process of an 

earthquake involves the superposition of the three basic modes (Mode I, II and III) recognized in 

dynamic fracture mechanics (e.g., Atkinson, 1987). In fact, laboratory observations suggest that a 

large number of tensile (mode I) microcracks are generated during shear slipping (e.g., Cox and 

Scholz, 1988; Moore and Lockner, 1995; Anders and Wiltschko, 1994; Petit and Barquins, 1988). 

Numerical and field investigation of brittle faults carried out by Vermilye and Scholz (1998) show 

that the tensile microcracks zone occurs within a volume of rock surrounding the fault tip. This 

zone may form before, during, or after growth of the shear plane. These observations of experiment 

inducing shear fractures (e.g., Cox and Scholz, 1988) as well as field investigations (e.g., Vermilye 

and Scholz, 1998) also suggest that unlike tensile fractures, low-pressure shear fracture does not 

grow by simple propagation within their own plane. Instead, they propagate by a complex 

breakdown process involving the interaction and coalescence of mode I microfractures. This idea 

come since Scholz, (1968) and Lajtai, (1971), in which they conclude that the shear cracks develop 

as a plane of shear failure only after a long history of tensile microfracturing. Steps include the 
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formation of individual tensile microcracks, propagation and merge of these cracks and finally 

larger scale shear failure. It suggests that a shear rupture will propagate only along a weakness 

plane such as a preexisting fault (Scholz, 1990) 

 In this context, considering the laboratory and field observations mentioned above, the 

numerical simulation of a dynamic rupture process of an earthquake involving the three basic 

modes (Mode I, II and III), imply the assumption of a pre-existing fault for developing of the shear 

crack, and the tensile stress concentrations resulting from slip on the pre-existing fault will cause 

the mode I cracks that will propagates away from the pre-existing fault. A few numerical 

simulations were developed introducing the tensile crack during the dynamic shear rupture, one 

example is the work of Yamashita (2000), this author investigated numerically the generation of 

tensile microcracks by dynamic shear rupture using a 2D Finite Difference formulation. In this 

model the microcracks are always separated by a fixed distance and are locally parallel, i.e., the 

simulation consist of a concentration of a swarm of cracks, these assumptions do not allow the 

linking between the cracks in order to form a new surface of crack. Vermilye and Scholz (1998) 

and Reches and Lockner (1994) studied the generation of microcracks based in a quasi-static 

analysis, they inferred only the orientation of the microcracks from the analysis of quasi-static 

tensile stresses. 

 In the present thesis we employ a 3D numerical model to simulate the shear dynamic 

rupture process of an earthquake; and additionally, the possibility to simulate the propagation of 

new tensile cracks as a consequence of a spontaneous shear dynamic rupture process of a pre-

existing fault is also formulated. For the shear rupture propagation the simple slip weakening model 

is used as a friction law on the pre-existing fault, while for the new tensile cracks, the fracture will 

occur, following the classical Linear Elastic Fracture Mechanics (LEFM) theory (Griffith, 1920), 

when the critical value of tensile fracture surface energy is reached  

To perform the numerical model proposed above, that is, for the analysis of the motion 

produced in a three-dimensional continuum by a rupture propagating along a pre-existing fault and 

the generation of new cracks, four aspects of the problem deserve take in consideration: 

(a) Modeling of the solid continuum and seismic wave radiated from the fault. 

(b) Artificial boundaries of the modeled volume to represent the (semi) infinite extent of the 

continuum. 

(c) Modeling of the dynamic rupture propagation on the fault. This imply the definition of the 

friction law that govern the shear slipping and the boundary conditions on the pre-existing fault. 

(d) Definition of the constitutive relation to open tensile cracks as a consequence of the shear 

slipping. 
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The problem mainly consist in the modeling of the first item by way of introduction to the 

more complex topics included in (b), (c) and (d). A schematic representation of the problem is 

shown in fig.3.1, a layer with a pre-existing fault is considered. To facilitate a numerical solution 

the area is limited by the broken line that become artifitial boundaries. This boundary around the 

model should be defined in order to simulate the (semi) infinite extent of the continuum. The Wave 

propagation occurs in a simulated earthquake due to a spontaneous slippage along the pre-existing 

fault surface, which should be nonreflecting in the artificial boundary. The pre-existing fault inside 

the surface S includes two adjacent surfaces pressed against each other. These surfaces are normal 

to the layer middle plane S. 

 

 

 

Pre-existing fault  

S  

 

 

 

 

 

 

 

 

 

Figure 3.1. Schematic representation of the problem: Finite elastic layer with surface S and a pre-

existing fault. The area limited by the broken line represents the region to be modeled. 

Furthermore. The arrows show the orientation of shear slip along the pre-existing fault. And the 

irregular lines are the tensile cracks originated by the shear slipping of the pre-existing fault. 

 

 

The simplest assumption concerning the mechanical behaviour of the material is to admit 

linear elasticity, jointly with linear viscous damping. Those hypotheses appear to be sufficient to 

account for the response of sound rock to seismic excitation and are common to most procedures 

proposed in the literature.  
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3.2 Local Absorbing Boundary used in the DEM 
 

 During the formulation of the model an important problem is confronted, that is, how the 

artificial boundary conditions around the model should be defined in order to simulate the infinite 

extent of the continuous medium and allow energy to propagate only from the interior to the 

exterior region. In other words, the wave propagation process originated at a point on the fault 

surface due to the dynamic rupture has to be non-reflected at the artificial boundary. Several 

schemes have been developed to formulate highly absorbing local approximations to the perfectly 

absorbing boundary. In this work the one-dimensional wave propagation solution using the semi-

infinite prismatic rod as a simplest case is adopted (Wolf, 1988), due to the simplicity of this 

formulation and to the characteristics of the discrete element method. 

 The one-dimensional wave propagation, which by definition is local in space, can be used to 

develop the basis for frequency-independent transmitting boundaries, which are local in time. The 

semi-infinite prismatic rod is the simplest case. Radial effects are disregarded. 

 The prismatic rod with area A, modulo of elasticity E, and mass density ρ extending to 

infinity is shown in fig. 3.2a. N represents the axial force and u the axial displacement. Formulating 

equilibrium of the infinitesimal element (fig. 3.2b) 

 

N,xdx - ρAdxü = 0                                                       (3.1) 

 

and substituting the force-displacement relationship 

 

N = EAu,x                                                          (3.2) 

 

leads to the equation of motion 

 

u,xx - ü/cl
2 = 0                                                          (3.3) 

 

where cl denotes the rod velocity 

 

cl = (E/ρ)1/2                                                          (3.4) 
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           (b)
     (a)    ρAdxü

A    E    ρ
     x         N   N+N,x dx

                           u
        dx

     (c)         c

              x=l

 

Figure 3.2 (a) Semi-infinite prismatic rod; (b) Equilibrium of infinitesimal element; (c) Viscous 

damper modeling truncated rod 

 

 

Solving the Equation (3.3), and considering the property of a transmitting boundary located 

on the artificial boundary at x=l (fig. 3.2c), the wave encounters the artificial boundary, this wave 

must pass through it without any modification so it can continue propagating towards x=+∞. 

Considering this fact, the physical interpretation of the boundary condition at x=l becomes apparent 

by (Wolf, 1988) 

 

EAu,x + EAu/cl =0                                                      (3.5a) 

 

or, after substituting Equation (3.2) and (3.4) 

 

N + cu = 0                                                           (3.5b) 

 

results with 

 

c = Aρcl                                                              (3.6) 
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With non absorbing boundariesWith absorbing boundaries 

Figure 3.3. Comparison of wave progation for a model with absorbing and non-absorbing 

boundaries 
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Equation (3.5b) expresses equilibrium at the artificial boundary, involving the normal force 

and the force of a viscous damper with a coefficient c, which replace the part of the rod up to the 

infinity (fig. 3.2c). c is also called the impedance. Because c is independent of frequency, this 

transmitting boundary can be used directly for an analysis in the time domain. Therefore, Equation 

(3.5b) is used stead of Equation (2.4) for the borders of the computational domain. 

 In order to show the efficiency of the formulation given by Equation (3.5b), a numerical 

example is developed. In Figure 3.3 is shown the P and S wave propagation in a semi-infinite space 

with absorbing and no-absorbing boundary conditions. In the numerical experiment a unit 

rectangular horizontal load is applied on the middle of the space of 10km x 10km. A grid size of 

0.25km and a step time ∆t=0.05 seconds are used. The continuum is characterized by a set of P 

wave velocity (6.1 km/sec), S wave velocity (3.5 km/sec), density 2700 kg/m3, corresponding to 

Young's modulus 8.37 x 1010 N/m2, Shear modulus 3.35 x 1010 N/m2 and Poisson's ratio 0.25. In 

Figure 3.3 we can observe the efficiency of the absorbing boundaries for the P and S waves. While 

for the model without absorbing boundaries, the waves are reflected from the borders of the model. 

 

 

3.3 Boundary Conditions along the Pre-existing fault 
 

As shown in fig.3.1, a layer with a pre-existing fault is considered. The pre-existing fault 

inside the surface S includes two adjacent surfaces pressed against each other. Let set that the fault 

is on the x-y plane in which the crack starts to propagate at the origin of coordinates x-y-z. The z 

axis is normal to the fault plane. The displacements components that satisfy the equation of motion 

given by Equation. (2.4) in the direction of x, y and z are u(x,y,z,t), v(x,y,z,t) and w(x,y,z,t) 

respectively. The rupture zone propagates along the pre-existing fault. Let set the rupture zone Γ(t) 

at time t inside the pre-existing fault as shown in Figure 3.4 

 The constitution of the interface material along the fault must be essentially stable (i.e. no 

marked penetration or normal plastic deformation of the interface). In this context the displacement 

component normal to the fault plane, w(x,y,0,t), is continuous inside and outside the rupture zone. 

Therefore it is assumed that 

 

),0,,(),0,,( tyxwtyxw −=+                                                (3.7) 
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Figure 3.4. Scheme of the rupture process at time t along the pre-existing fault 

 

 

 Inside the rupture zone Γ(t) (z=0) the displacements u(x,y,0,t) and v(x,y,0,t) are 

discontinuous  

 

),0,,(),0,,(),,( tyxutyxutyxDx −−+=     for x,y ∈ Γ(t)                                         (3.8a) 

 

),0,,(),0,,(),,( tyxvtyxvtyxDy −−+=     for x,y ∈ Γ(t)                                         (3.8b) 

 

 

and out of the rupture zone they are continuous 

 

),0,,(),0,,( tyxutyxu −=+        for x,y ∉ Γ(t)                                         (3.9a) 

 

),0,,(),0,,( tyxvtyxv −=+        for x,y ∉ Γ(t)                                         (3.9b) 

therefore 

0),,(),,( == tyxDtyxD yx  ..... for x,y ∉ Γ(t)                                        (3.9c) 
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where Dx(x,y,t) and Dy(x,y,t) are the slip along the fault in x and y component respectively. The total 

slip could be given by 

 

22 ),,(),,(),,( tyxDtyxDtyxD yx +=                                           (3.10) 

 

 The shear ft and normal fn forces are continuous: 

 

),0,,(),0,,( tyxftyxff ttt −=+=                                                (3.11a) 

),0,,(),0,,( tyxftyxf nn −=+                                                   (3.11b) 

 

 Inside the rupture zone Γ(t) the shear forces ft, follow a low friction  

 

),( DDTff ut
&−=       para x,y ∈ Γ(t)                                            (3.12) 

 

Where fu is the critical shear force before happen the rupture of the fault and T(D, ) is the friction 

force on the fault that could be dependent or not of the slipping D and/or the sip velocity .  

D&

D&

 

 

3.4 Friction Law Along the Pre-existing Shear Fault 
 

Laboratory experiments on rock (e.g. Dieterich, 1979; Ohnaka et al., 1987, Ruina, 1983) lead to 

slip- and/or rate-dependent friction models. In this study we adopt the simple slip-weakening 

friction model in the form given by Andrews (1976). This friction law that was first proposed by 

Ida (1972) is extensively used for dynamic simulation of fault rupture processes (e.g., Andrews, 

1976; Day, 1982b; Olsen et al., 1997; Fukuyama and Madariaga, 1998; Harris and Day, 1999). The 

slip-weakening friction model is schematically represented in Figure 3.5. The shear force on the 

fault calculated from the resultant force, fi, of Equation (2.4), could be expressed by the shear 

stress, τ. The following is the relation between the shear stress, τ,. and the slip of the fault, D. 
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where τu is the critical stress or the upper yield point, τf is the final stress or the residual stress 

which is considered as the dynamic friction stress level, and Dc is the slip required for stress to drop 

to its dynamic friction level. We assume that there is not back slip on the fault, which means that 

the slip velocity is always greater or equal to zero. 
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Critical Stress (τu)  
 
 
 
 Initial stress (τo) 
 
 
 
 

Final stress (τf)  
 

 

Figure 3.5. The slip-weakening friction model. 

 

 

Initially the stress distribution along the fault is in the initial stress level (τo), the rupture is 

initiated artificially by imposing stress drop in a limited space, this step leads the initial stresses 

along the fault increase monotonically without any relative slipping along the fault until, 

eventually, the interface shear stress,τ., at a point exceeds the local shear strength (critical stress 

level τu) and slip at a node occurs being governed by the slip weakening model shown in Figure 3.5 

and represented by Equation (3.13). 
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3.5 Constitutive Relation for the Tensile Crack Propagation 
 

 It was observed in rock (e.g., Atkinson, 1987) that the behavior of uniaxial tensile stress-

strain shows strain softening after a peak stress has been reached. Therefore, a constitutive model 

for a pure mode I is the stress versus crack-opening-displacement as shown in Fig. 3.6a, it could be 

obtained from displacement-controlled direct tension test (Atkinson, 1987). A material behaving in 

this manner would show a gradual damaged zone development, as schematically shown in Fig. 

3.6b. This would be related to the critical tensile fracture energy, GIc, of linear elastic fracture 

mechanics (LEFM) that has its roots in Griffith's energy balance concept. Therefore, extension of a 

fracture will occur once the GIc has been reached or exceeded. From Fig. 3.6a, the critical fracture 

energy, GIc, may be given as follow: 

 

∫=
cU

Ic dUUG
0

)(σ                                                                  (3.14) 
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Figure 3.6. (a) Stress versus crack opening displacement relation which can be obtained from a 

displacement-controlled, direct tension test (Atkinson, 1987). (b) A schematic view of the 

hypothesized process zone (Atkinson, 1987). 
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 Use of DEM models, that is, the representation of elastic solids using discrete masses 

interconnected by unidimensional elements, is very convenient to simulate tensile cracking with the 

features shown in Fig. 3.6. In this context, the constitutive relation for the tensile stress-strain 

adopted for each bar element of the DEM is shown in the Figure 3.7a. The loading and unloading 

path is shown in Fig. 3.7b. A similar model was successfully used by Riera and Rocha (1991) to 

solve dynamic tensile cracks propagation in 2D problems. Since the stress and strain are in the one-

dimensional formulation, the critical tensile stress σc could be derived from Equation (2.3) or 

directly from Figure 3.7a 

 

σc=Eεp                                                                     (3.15) 

 

where εp is the maximum elastic strain. 
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Figure 3.7. (a) Constitutive relation for the tensile crack generation used in the DEM, (b) loading 

and unloading paths. 

 

 Considering Equation (3.14) and Fig. 3.6, the critical fracture energy, GIc, for the DEM can 

be obtained as the area of the inelastic zone of the stress-strain relation shown in Fig. 3.7a; thus, 

using Equation (3.15) we get 

 

)1(
2
1 2 −∆= rpIc kxEG ε                                                  (3.16) 

where ∆x is the length of the element bar (grid size of the DEM.) and 
p

r
rk

ε
ε

= , shown in Fig. 3.7a, 

is the coefficient that defines the strain softening after a peak stress has been reached, until crack 
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totally opens. The critical tensile stress σc may be calculated by the modified form of the classical 

Griffith equation (Griffith, 1920) 

 

c
EGIc

c π
σ ≅                                                              (3.17) 

 

where 2c is the pre-existing crack length. For a crack in a linear elastic solid, GIc can be expressed 

in terms of the critical stress intensity factor KIc in mode I. Using Griffith’s energy balance concept, 

it follows that: 

EKG IcIc /)1( 22 υ−=                                                               (3.18) 

 

where ν is the Poisson’s coefficient. From Equations (3.17) and (3.18), the critical stress intensity 

factor KIc may be expressed in the form: 

 

 LK cIc χσ =                                                             (3.19) 

 

For the problem under consideration, L is the length of the pre-existing fault and χ is a non 

dimensional factor that depends on the problem geometry and the grid size of the DEM. From 

Equations (3.15), (3.18) and (3.19), it may be easily verified that 

 

LE
Gc

p )1(
1

2υχ
ε

−
=                                                         (3.20) 

 

The non dimensional factor, χ, can be estimated, from the combination of Equations (3.16) and 

(3.20), as: 

1
)1(2

)1(
2 >

−
∆−

= r
r k

L
xk

ν
χ                                    (3.21) 

 

 For the tensile crack propagation formulation given above, two parameters need to be 

previously defined from a set of alternatives, they may be the critical tensile stress intensity factor, 

KIc, or the critical tensile fracture energy, GIc, and the kr coefficient. 
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Chapter 4 
 
Validity of the Model 
 

 

The numerical solution is obtained for the near-field elastodynamic motion coupled to 

frictional sliding on pre-existing fault. In order to validate the coupled problem, the model is 

validated for the dynamic rupture process of a fault for the 2D and 3D problem simulating 

theoretical crack problems. 

 

 

4.1 Dynamic Rupture Propagation in a 2D Model 
 

Dalguer (2000) and Dalguer et al (2001b) presented the validity of the 2D model to simulate 

dynamic rupture propagation. In this section, the problem used by these authors to verify the 

adequacy of the DEM is reproduced as follow: 

The spontaneous inplane rupture process with the slip weakening law employed by 

Andrews (1976) is analyzed. In this problem, plane strain is assumed. The crack plane is the x-y 

plane, in which the crack propagates bilaterally in the x direction and extends indefinitely in the y 

direction, as shown in Figure 4.1. The medium is thus an infinite, homogeneous, isotropic, and 

linearly elastic crack plane. When the crack propagates, it will not stop. 

 

 
y

o

z

x

2Lc

 x=-∞  x=+∞  

 

 

 

Figure 4.1 Theoretical fault, the rupture starts at the center and propagate bilaterally along the x 

axis and extends indefinitely in the y direction. 
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For the numerical computations, the parameters are normalized as follow (Andrews, 1976): 

Shear stress along the crack plane τ’=τ/∆τ; x-axis parallel to the crack plane x’=x/ Lc, Time 

t’=tβ/Lc , Slip: u’=uµ/Lc∆τ , Slip velocity: v’=vµ/β∆τ, where β is the S wave velocity, µ is the 

shear rigidity, ∆τ is the stress drop, Lc is the critical half-length (Fig. 4.1) of a Griffith crack in 

plane strain derived by Andrews (1976), 

 

2))(2(
)(8

fo
c

GL
ττµλπ

µλµ
−+

+
=                                                           (4.1) 

 

where λ and µ are the Lamé constants and G is the effective fracture surface energy given by: 

 

cfu DG )(
4
1 ττ −=                                                             (4.2) 

 

It is assume that that Poisson’s coefficient is 0.25, so 3/ =βα , where α is the P wave 

velocity. These non-dimensional quantities are equivalent to assuming that µ=1, ∆τ=1, β=1, 

3=α , Lc=1, density ρ=1. The calculations were performed with a grid size ∆x=0.1Lc (length of 

the side of one cubic element) and (τu-τo)/∆σ =0.8. Using equations (4.1) and (4.2), Dc=1.31 is 

calculated. 

The near-field elastodynamic problem coupled to frictional sliding on a prescribed crack plane 

is solved using the 2D DEM. Initially the stress distribution along the fault is in the initial stress 

level (τo) , the rupture is initiated artificially by imposing a stress drop to propagates at least as fast 

as 0.5β, which leads to initial stresses along the fault that increase monotonically without any 

relative slipping along the fault. Eventually, the interface shear stress (τ.) at a point exceeds the 

local shear strength (critical stress level τu) and slip at a node occurs, governed by the slip 

weakening model shown in Figure 3.5. Considering that the seismic radiation depends only on the 

stress change (stress drop) during the earthquake, and not on the total stress, we assume that the 

initial stress (τo) along the fault is at its zero level. Therefore, the necessary parameters required to 

simulate the rupture process governed by the slip weakening friction model are the strength excess, 

stress drop and critical slip. 

Figures 4.2 to 4.7 shows the results of our numerical simulation for a theoretical spontaneous 

inplane rupture problem and compared with the results obtained by Andrews (1976). 
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Andrews (1976) Present model  

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Space-time of rupture propagation of the spontaneous inplane rupture problem 

presented by Andrews (1976). Region between the two solid lines is the rupture front, where slip 

velocity is nonzero and stress drop is incomplete. Dashed line labeled P, S and R represents the 

wave front of the compressional, shear and Rayleigh waves respectively as a reference (Rayleigh 

wave velocity=0.9194β). (a) Present model; (b) Andrews (1976)  
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Figure 4.3. Dimensionless slip velocity, v’=vµ/β∆τ, as a function of position on the crack at the 

dimensionless time βt/Lc = 8.07. (a) Present model; (b) Andrews (1976). 



 26

 

(b) 

(a)  

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Shear stress and slip as a function of position on the crack plane at dimensionless time 

βt/Lc = 8.07. Heavier solid curve is dimensionless slip function divided by 10, 
)(10 τ

µ
∆cL

u ; lighter 

solid line is the dimensionless change of shear stress, (
τ
τ
∆

): (a) present model; (b) Andrews 

(1976). 
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Figure 4.5. Shear stress and slip as a function of position on the crack plane at dimensionless time 

βt/Lc = 10.38. Legend is the same as that for figure 4.3. (a) present model; (b) Andrews (1976). 
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Figure 4.6. Shear stress and slip as a function of position on the crack plane at dimensionless time 

βt/Lc = 12.36. Legend is the same as that for figure 4.3. (a) present model; (b) Andrews (1976). 
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Figure 4.7. Shear stress and slip as a function of position on the crack plane at dimensionless time 

βt/Lc = 14.34. Legend is the same as that for figure 4.3. (a) present model; (b) Andrews (1976). 
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Figure 4.2 shows the space-time distribution of rupture. The region between the two solid 

lines is the rupture front, where slip velocity is nonzero and stress drop is incomplete. Figure 4.3 

shows the slip velocity as a function of position at the same instant, at dimensionless time βt/Lc = 

12.36. Figures 4.4 to 4.7 show the shear stress and slip as a function of position on the crack plane 

at dimensionless time βt/Lc = 8.07, 10.38, 12.36 and 14.34 respectively. The peak of the shear 

stress on the rupture front as well as the secondary peak associated with the S waves are very 

precisely described by the DEM. The results are very consistent with the solution presented by 

Andrews (1976). 

 

 

4.2 Dynamic rupture propagation in a 3D model 
 

In order to verify the adequacy of using the DEM to simulate a dynamic rupture process in 

3D, three problems presented by Madariaga et al. (1998) are herein analyzed: first, a circular shear 

fault that breaks instantaneously and does not propagate; second, a spontaneous growth of rupture 

that initiates from a circular asperity and does not stop; and third, a spontaneous growth of rupture 

on a finite circular fault. The slip weakening model as a friction law of the fault is adopted 

(Equation 3.13 and Fig.3.5) 

 

 

 

4.2.1 Circular shear fault that breaks instantaneously and does not propagate  

 

This problem was aproximated by Brune (1970) and solved numerically assuming circular 

symmetry by Madariaga (1976). Madariaga et al. (1998) also use this example to validate the Finite 

Difenece Method. In this problem, it is assumed that the fault appears instantaneously in the 

medium and that rupture occurs instantaneously inside a circular fault of radius R. The geometry of 

the problem is described in Fig. 4.8, the circular fault is on the x-y coordinate plane and slip is 

allowed just in  the y direction, that is, the x component of the slip is zero. The fault is embedded in 

a infinite homogeneous, isotropic elastic medium with Poisson’s coefficient 0.25, so 3/ =βα , 

where α is the P wave velocity and β the S wave velocity. The problem is solved for β=1, 3=α , 

density ρ=1, rigidity µ=1, grid size ∆x=1, radius of the circular fault R=11∆x. A simple Coulomb 

friction law along the fault is assumed, with a critical slip Dc=0. The critical stress is τu =1, while 
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the initial stress is τo =τu=1. This means that the strength excess is zero, so the fault is prestressed 

just before rupture and stress reduces instantly to zero at time t=0. With these assumptions the 

stress drop ∆σ is 1 everywhere in the rupture zone. The results are normalized following the scale 

used by Madariaga et al (1998), as follow: 

Distance along the fault:  The unit of ∆x (grid interval) 

Time:     t’=tα/(H∆x)        (H=1.0) 

Slip:     D’=Dµ/(2∆x τu) 

Slip velocity:     )2/(' uDD βτµ&& =

Stress:     τ’=τ/τu 
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R

Anti plane 
 direction (X) 

Inplane direction (Y) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Theoretical circular fault that breaks instantaneously, the fault is on the x-y plane and 

the rupture occurs instantaneously inside a circular fault of radius R. The arrows show the direction 

on the slip. 

 

 

Fig 4.9 show the slip function calculated by the DEM and by Madariaga et al (1998) at 

different points along the radius of the fault for the inplane direction (y axis) and antiplane mode (x 

axis). All the characteristics of the instantaneous rupture circular shear fault observed by Madariaga 

et al (1998) are very well reproduced by the DEM. For example, Madariaga et al (1998) explain 
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that, after about 20 time units, the slip functions at the center of the fault show a break in slope 

corresponding to the arrival of the P stopping phase. After about 34 time units, the S stopping phase 

arrives in which the fault stops slipping. The solutions for the inplane and antiplane mode are 

similar but they are not exactly equal, so there is no cylindrical symmetry around the center of the 

fault. 
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Figure 4.9. Slip as a function of time for an instantaneous circular fault rupture. Each curve 

represents the slip function at a different point along a radius of the fault. (a) slip for the inplane 

mode (along the y axis). (b) slip for the antinplane mode (along the x axis). At the top of the figures 

is the solution for the present model (DEM) and at the bottom is the solution presented by 

Madariaga et al 1998. 
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4.2.2 Spontaneous growth of rupture  

 

In this problem the rupture initiates from a circular asperity, spontaneoulsly propagate and 

do not stop. This example was solved by Madariaga et al 1998 using FDM model. The geometry of 

the problem is the same described in Figure 4.8. The fault is on the x-y coordinate plane and the slip 

is allowed just in  the y direction, that is, the x component of the slip is zero. The radius of the 

circular fault that break instantaneously is R=10∆x. The initial stress τo = 1.6τu inside and τo = 0.5τu 

outside the asperity, τu =1.0. In this problem the slip weakening friction law is used. In 

nondimensional units the critical slip Dc = 4, the normalized units for all the variables are the same 

used in the previous example. For the normalized time it is used H=0.35. 

 Figure 4.10 and figure 4.11 show the results of the spontaneous growth of rupture for the 

present model (DEM) and for the FDM presented by Madariaga et al (1998). The slip and stress 

distribution on the fault as a function of time and position along the in-plane direction shown in 

Figure 4.10a and b respectively is very similar with that obtained using the FDM (Figure 4.11 a,b). 

The time scale of figure 4.11 a,b has probably a typographical error, because this time scale do not 

correspond to the unit time specified in the paper of Madariaga et al (1998). In Figure 4.10c and d 

for the DEM, as well as figure 4.11 c and d for the FDM are shown the slip velocity and the stress 

distribution as a function of position along the inplane direction respectively at dimensionless time 

t’=200. All the properties of the spontaneous growth of rupture observed by Madariaga et al (1998) 

are very well reproduced by the DEM. For example, the peak of the shear stress on the rupture front 

as well as the secondary peak associated with the S waves are very precisely described by the DEM 

(Figure 4.10b and d). It was also very well simulated by the DEM for a two dimensional in-plane 

crack as presented in the section 4.1. As shown for the 2D problem (figures 4.4 to 4.7) when the 

stress field outside the fault is sufficiently strong, the rupture front becomes unstable, and the 

rupture jumps to the shear-wave velocity. This phenomenon was originally shown by Andrews 

(1976). 
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Figure 4.10. Numerical solution using the DEM of the spontaneous growth of rupture in which 

rupture initiates from a circular asperity, spontaneoulsly propagate and do not stop. Figure (a) and 

(b) show the slip and stress distribution on the fault as a function of time and position along the in-

plane direction respectively. Figure (c) and (d) show the slip velocity and the stress distribution as a 

function of position along the inplane direction respectively at dimensionless time t’=200. 
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Figure 4.11. Numerical solution presented by Madariaga et al (1998) of the spontaneous growth of 

rupture in which rupture initiates from a circular asperity, spontaneoulsly propagate and do not 

stop. Description of figs. (a), (b), (c) and (d) are the same as in Fig. 4.10. 



 33

4.2.3 Spontaneous rupture on a finite fault  

In this problem the rupture initiates from a concentric circular asperity and stop when it 

reaches unbreakable boundary of a finite circular fault. This example was solved by Madariaga et al 

1998 using FDM model. The geometry of the problem is described in Figure 4.12. The fault is on 

the x-y coordinate plane and the slip is allowed just in the y direction, that is, the x component of 

the slip is zero. 
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Figure 4.12. Theoretical finite circular fault. The fault is on the x-y plane, the concentric circular 

asperity breaks instantaneously and the rupture propagates until reaches the unbreakable boundary 

of the finite circular fault in which the rupture stop. The arrows show the direction on the slip. 

 

 The circular fault has a radius of R=50∆x. The rupture starts from a concentric asperity of 

radius r=6∆x. The slip weakening friction law is also used with a critical slip Dc=4. The initial 

stress inside the concentric asperity is τo = 1.2τu and τo = 0.8τu outside. The normalized units for all 

the variables are the same used in the previous examples 

The results of the simulation are presented in snapshots of the slip velocity as shown in 

Figure 4.13 (for the solution using the present model) and in Figure 4.14 (for the solution using the 

FDM presented by Madariaga et al, (1998). The results using the DEM are also very similar with 

that calculated using the FDM. The rupture grow faster in the inplane direction, which is dominated 

by the mode II. 
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Figure 4.13. Snapshots of the slip velocity for a spontaneous rupture inside a finite circular fault 

calculated using the present model (DEM). The rupture starts overloaded a concentric circular 

asperity inside the finite circular fault. The nondimensional time for each snapshot is shown below 

each picture. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14. Snapshots of the slip velocity for a spontaneous rupture inside a finite circular fault 

calculated using the FDM presented by Madariaga et al (1998). The rupture starts overloaded a 

concentric circular asperity inside the finite circular fault. The nondimensional time for each 

snapshot is shown below each picture. 
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 The problems analyzed to verify the adequacy of the DEM for the 2D and 3D model to 

simulate a dynamic rupture process were very well resolved by the DEM, the results are very 

consistent with the solutions presented in the specialized literature. Therefore, the 2D and the 3D 

DEM can be used very effectively to study spontaneous rupture propagation in a fault model 

embedded in an elastic medium. 
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Chapter 5 

 

Parameters Estimation for Dynamic 

Simulation. 
 

 

5.1 Esimation of Stress-drop, Strength Excess and Critical Slip. 
 

For the 3D dynamic spontaneous rupture simulation of a real earthquakes we need to know: 

the geometry of the fault, the initial stres distribution along the fault, the stress drop distribution, the 

strength of the fault to break and the critical slip (if slip weakening friction model is used). The 

choice of these parameters used for the simulation of the dynamic rupture of a fault is a delicate 

issue, still subject of debate. Assuming that the effective stress to slip is the stress drop, we do not 

need to know the absolute level of the stress, therefore, the initial stress could be assumed to be in 

the zero level. Then, for the assumption of a slip weakening friction law, we need to define the 

stress drop, the strength excess and the critical slip along the fault. These parameters could be 

estimated from the shear stress function that changes in time during and earthquake as 

schematically show in Fig. 5.1a. But the direct estimation of this shear stress change from 

observations is not feasible, the closest information about the source that we have is the results of 

the kinematic waveform inversion given by the slip distribution in time (Fig. 5.1b) along the fault. 

In this context, for the computation of the shear stress changes during earthquake rupture we use 

the distribution of fault slip and rupture time obtained from the inversion of strong motion 

waveforms. For this purpose, using the DEM, we model the continuum surrounding the pre-

existing fault as specified by the kinematic model and we solve the elastodynamic equation of 
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motion of the continuum for a rupture along the fault plane. The slip distribution in space and time 

obtained by the kinematic fault model is used as a boundary condition along the pre-existing fault; 

this allows the determination of the relative stress time history (Fig. 5.1a) at every nodal point 

along the fault. This procedure, i.e., determination of the dynamic stress change from the results of 

kinematic waveform inversion, has been used by several authors [e.g., Quin, 1990; Miyatake, 1992; 

Mikumo and Miyatake, 1995; Bouchon, 1997; Day et al., 1998; Mikumo et al., 1999), most of them 

using the finite-difference method.  
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Figure 5.1. Characteristics of shear stress and slip function on any discrete point of a fault and 

dynamic paramenetrs specification. (a) shear stress time history; (b) slip time function; (c) shear 

stress Vs slip function. 

 

 

From the results of the stress-time function (fig. 5.1a) the strength excess, the dynamic.and 

static stress drop could be estimated. From the expression of the stress in function of the slip as 

observed schematically in Fig. 5.1c, the critical slip could be roughly estimated.  

Fig. 5.2 shows schematically the global procedure of the dynamic rupture simulation based 

on the results of kinematical wave form inversion. 
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Figure 5.2. Schematic representation of the global procedure of the dynamic rupture simulation 

based on the results of kinematical wave form inversion. 

 

 

5.2 Aplication to the 2000 Tottori Earthquake 
 

For the estimation of the dynamic parameters (stress drop, strength excess and critical slip) we 

follow the procedure described above. The distribution of fault slip of the 2000 Tottori earthquake 

obtained from the inversion of strong motion waveforms calculated by Iwata et al. (2000) was used. 

We adopted the fault plane properties defined by Iwata et al. (2000), i.e., a fault plane with strike 

N150E and dip 90o, fault length and width are 33km and 21km. The subfault-size is 3x3km square 

(it implies a grid size of the DEM equal to 3km) With the hypocenter at a depth of 13.4km. The 

velocity structure is shown in Table 5.1. 
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Figure 5.3. Slip time function for each sub fault given by the kinematic model and calculated by 

Iwata et al (2000). (a) strike component, (b) dip component. 
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Table 5.1. Velocity structure 

 
Depth (km) Vp (km/s) Vs (km/s) ρ (kg/m3) 

0 

2 

16 

38 

5.5 

6.05 

6.6 

8.03 

3.179 

3.497 

3.815 

4.624 

2600 

2700 

2800 

3100 

 

 
 

 The slip time function for each sub fault given by the kinematic model as shown in Fig. 5.3 

is used as a boundary condition along the pre-existing fault to solve the elastodynamic equation of 

motion of the continuum for a rupture along the fault plane. 

 

 The results are given by the strike and dip component of the stress time function for each 

subfault. But the results of interest are the stress in the direction of the total slip. For this purpose, 

the dip and strike component of the stress are decomposed to calculate the total stress in the 

direction of the total slip. If the total stress increases with the slip (hardening) a negative stress drop 

takes place, on the contrary, if the total stress decreases with the slip (weakening) a positive stress 

drop takes place. 

 Fig. 5.4a shows the total stress with time, from which the strength excess, the dynamic and 

static stress drop could be estimated. Fig. 5.4b shows the total stress-slip function, from which the 

critical slip could be estimated. The criterion used for the estimation is the direct observation by 

eyes for each stress function following the specifications of Fig. 5.1. Considering the uncertainty of 

the definition of these parameters, this criterion is enough to start the simulation of dynamic rupture 

process. 
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Figure 5.4. Total shear stress distribution for each sub-fault calculated from the kinematic source 

model. (a) total shear stress time function; (b) total shear stress-slip function 
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The distribution of the dynamic and static stress drop estimated from Fig. 5.4a is shown in  

Fig. 5.5a. In order to validate these results we compare with the results evaluated using the 

approach presented by Bouchon (1997) and calculated by Zhang et al. (2001), as shown in Fig. 

5.5b, in which subfaults of size 0.5x0.5km was used. On account of the difference between grid 

sizes used in the two models, the approach of Bouchon leads to sharper plots than those resulting 

from the DEM. But in general both sets of results are perfectly consistent. 
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Figure 5.5 Distribution of the dynamic and static stress drop estimated from the results of 

kinematic source model of Iwata et al (2000) of the 2000 Tottori earthquake. (a) Results using the 

Discrete Element Method (present model); (b) results calculated by Zhang et al. (2001) using the 

approach of Bouchon (1997) 
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 From Fig. 5.5 we can observe that there is a localized asperity in the upper central part of 

the fault. The maximum stress drop is 30 MPa in the asperity zone; while the dynamic stress drop 

shows negative values near the free-surface and at the left and right sides of the fault. This suggests 

that the stress continuously accumulate during the rupture process (hardening). The static stress 

drops in the asperities zone are very close the dynamic stress drops, but at the center of the fault 

and in the surrounding area of the asperities the stress is negative (max. -10Mpa), indicating that 

the stress in the asperity zone completely releases but in the surrounding area the stress increases 

after the rupture process of the earthquake. 

 Fig. 5.6 shows the strength excess distribution along the fault. Maximum values occur at the 

left and right sides of the fault, reaching around around 5MPa. The minimum values take place in 

all the central fringe of the fault except in a small portion between depths of 4 and 9km where 

moderate strength excess of 4MPa are determined. It suggests that the tectonic shear stress had 

reached close to the level of the critical stress before the earthquake in almost all the central fringe 

of the fault. 

 

 

Figure 5.6. Strength excess distribution along the fault estimated from the results of kinematic 

source model of Iwata et al (2000) of the 2000 Tottori earthquake. 
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 From the results shown in Fig. 5.5 and 5.6, we may conclude that the causative fault of the 

2000 Tottori earthquake has a very heterogeneous stress distribution, with a localized asperity in 

the upper central part of the fault. Fault zone heterogeneity is now widely accepted in the study of 

earthquakes. The classical definition of asperities and barriers (e.g., Kanamori and Stewart, 1978; 

Aki, 1984), in which both terms are related to the absolute level of shear stress and strength 

distribution along the fault plane, is a simple as well as a robust description of such heterogeneity. 

This may also be important in controlling the number of foreshocks, i.e., the stronger the 

heterogeneity the greater the number of foreshocks (Dodge and Beroza, 1996). Certainly the same 

concept is also valid for the number of aftershocks. The stress heterogeneity associated with the 

foreshocks and aftershocks of the 2000 Tottori earthquake is going to be presented in the next item. 

 Fig. 5.7a shows the critical slip distribution along the fault. The critical slip (Dc) was 

estimated approximately from the zone in which the stress has positive stress drop. The 

approximated values of Dc vary with depth, being 2m near the free-surface, 1.0m in the center of 

the fault and 0.4m in the deepest zone as shown in Fig. 5.7b. 
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Figure 5.7. (a) Critical slip distribution along the fault estimated from the results of kinematic 

source model of Iwata et al (2000) of the 2000 Tottori earthquake. (b) Approximated values of Dc 

varying with depth.  
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5.2.1 Foreshock and aftershock associated with the stress distribution a long the fault of the 

2000 Tottori earthquake. 

The foreshock distribution is the manifestation of an earthquake nucleation (e.g., Jones et 

al., 1982; Jones, 1984; Dodge and Beroza, 1996; Ellsworth and Beroza, 1998) and the aftershock 

are triggered by the main shock, in response to the stress changes caused by the dynamic process of 

the earthquake. The physical understanding of the interaction between the foreshock, main shock 

and aftershock remains unresolved. Within this context, however, the study of Harris (1998), who 

reviewed many published works and presents a compilation of quantitative earthquake interaction 

studies from a stress change perspective, suggests that the stress changes may explain aspects of 

this phenomenon. 
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Figure 5.8. Comparison of the relocated hypocenter distribution of the seismic activity in 1989, 

1990, 1997 (foreshocks)and 2000 (aftershocks) determined by Shibutani et. al. (2001). The solid 

line and the start correspond to the fault plane and epicenter of the 2000 mainshock respectively a) 

Map view; b) Along the fault plane. 

 

 The recent 2000 Tottori-ken Seibu earthquake (Mj=7.3) provides us a good chance to study 

the problem of earthquake interaction. Shibutani et al. (2001) reported a swarm seismic activity 

including six moderate events (Mj=5.1-5.4) occurred in 1989, 1990 and 1997 in the same area of 

this earthquake (Fig. 5.8). These authors carried out a temporary seismic observation in and around 

the source area and processed the data to determine the hypocenters location of the preceding 

seismic activity, the main shock and the aftershock (Joint Group for Dense Aftershock Observation 
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of the 2000 Tottori-ken Seibu Earthquake, 2001). The relocated hypocenter distribution of the three 

preceding swarms as well as the 2000 activity determined by Shibutani et. al. (2001) show that 

these events occurred on the same fault plane as the Tottori earthquake and were distributed on 

specific areas within the fault plane (Fig. 5.8). In this context, we define the seismic activity of 

1989, 1990 and 1997 as foreshock because they broke weak zones on the same fault plane of the 

main event and could be the manifestation of nucleation of the Tottori earthquake. 

 The first intuitive interpretation of this seismic activity preceding and succeeding the 2000 

earthquake could be due to a possible strong heterogeneity over the fault plane, i.e., some of the 

strong patches on the fault behave as asperities and others as barriers. In order to explain some 

aspect of the space distribution of these foreshock and aftershock we can associate them with the 

dynamic stress distribution calculated in the previous item, that is the strength excess, the dynamic 

and static stress drop distribution. In Fig. 5.9 and 5.10 we compare foreshock and the aftershock 

location with the strength excess and stress drop distribution, respectively. 
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Figure 5.9. Comparison of the strength excess distribution with: (a) swarm seismic activity in 

1989, 1990, 1997 (foreshock) and (b) aftershocks 
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Figure 5.10. Comparison of the swarm seismic activity in 1989, 1990, 1997 (foreshock) and 

aftershocks with the dynamic and static stress drop distribution; a) foreshocks and dynamic stress 

drop; b) aftershock and dynamic stress drop; c) foreshock and static stress drop; d) aftershock and 

static stress drop. 

 

 

 From Fig. 5.9a we can observe that the foreshocks distribution was confined to a finite zone 

localized in the central part of the fault. Most of these events are located in the zone where the 

strength excess is very small. This suggests that the zones where the strength excess is larger 

behaved as barriers, being possibly responsible for arresting the rupture in the 1989, 1990 and 1997 

events. In Fig.5.9b it may also be observed that the aftershocks happened in this confined zone and 

on the left side of the fault. Apparently the right side, which presents the largest values of strength 

excess, was the strongest barrier. From Fig. 5.10a,c, we can observe that this confined zone is 

located below the asperity in the area where the dynamic stress drop is almost zero and the static 

stress drop is negative. It suggests that the asperity was also a barrier for the rupture process of the 

three swarms. The central zone where the dynamic stress drop has almost zero values, imply that in 

this zone the stress was already relaxed or dropped during the previous seismic activity. But the 

question arise why does this seismic activity occur in this confined zone? And why the existence of 



 48

this confined zone? Does the main shock was triggered by the stress changes from this previous 

swarm seismic activity? Shibutani et al. (2001) suggest that the 2000 Tottori earthquake and the 

preceding seismic activity might have been triggered by crustal fluids because this source area is 

located between the Daison Volcano, which was active during the Pleistocene, and the Yokata 

monogenic volcanic cluster, which was active in the early Pleistocene. Ohmi and Obara (2001) 

reported that several deep low-frequency earthquakes were found near the source area. If we 

observe the static stress drop distribution of Fig. 5.10c,d, this confined zone has considerable 

negative static stress drop. It seems to be that this zone is very active in which the stress accumulate 

faster than any other places on the fault. The biggest aftershocks happen in this zone (Fig. 5.10b,d), 

and probably this zone will continue active. 

 The calculation of the dynamic stress changes during the rupture process of the 2000 Tottori 

earthquake using the DEM shows important characteristics of this earthquake associated with the 

foreshock and aftershock distribution, confirming that the DEM may be reliably used in the 

analysis of dynamic stress changes during the rupture process of an earthquake. 

But from the analysis it is not clear whether the main shock was triggered by stress changes 

from the foreshocks, but certainly the foreshocks distribution is the most obvious manifestation of 

earthquake nucleation, so that earthquake prediction might require more detailed knowledge of the 

stress and strength distributions on faults. 

This part of the work was submitted to the Journal “Geophysical research Letter” (Dalguer 

et al., 2001c). 
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Chapter 6 

 

Application of the Model in 2D 
 

 

6.1 Preceding works 

The model was used to simulate variable problems in 2D. Riera and Rocha (1991) used the 

approach in fracture studies, these authors simulate the propagation of only tensile cracks, their 

results converge with available theoretical predictions. Doz and Riera (1995) employed the method 

to model the stick-and-slip motion along friction surfaces, Dalguer et al. (1999) evaluated the 

foreshock and periodicity of earthquakes, Dalguer et al. (2001a,b) simulate successfully the 

dynamic shear rupture process of the 1999 Chi-chi (Taiwan) earthquake. Detail information of the 

DEM and its application to several dynamic problems in 2D related to the rupture process of an 

earthquake may be found in Dalguer (2000). 

 As an example of the works listed above for the application of the model to simulate 

dynamic rupture process of an earthquake in 2D, one of the problems solved by Dalguer (2000) and 

presented in Dalguer et al. (2001a) is shown in Fig. 6.1. In this figure the snapshots every one 

seconds for the velocity parallel to a dipping fault during 12 seconds is shown. This figure 

corresponds to the results of the dynamic rupture process of the reverse fault near the hypocentral 

area of the 1999 Chi-Chi (Taiwan) earthquake. As observed in Fig.6.1, Dalguer et al. (2001a) 

showed that this kind of fault generates large differences between the near-source ground motions 

on the hanging wall and on the footwall. The ground motions on the hanging wall are larger than in 

the footwall, the numerical simulation suggests that such a difference is principally caused by the 

asymmetric geometry of the hanging wall and footwall. For this earthquake, where the rupture of 

the fault reaches the surface, the effect of the asymmetry on the ground motion is considerable. The 
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characteristics of this kind of earthquakes (dipping fault) were also shown by Mikumo and 

Miyatake (1993) in their investigation of the dynamic rupture process of the 1961 Kita-Mino 

earthquake in central Japan and by previous theoretical dynamic simulation of dipping fault, for 

example Nielsen (1998), Shi et al. (1998), Oglesby et al. (1998, 2000), as well as that observed in 

the foam rubber experiment of a thrust fault presented by Brune (1996). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Results of the dynamic rupture process simulation of the reverse fault near the 

hypocentral area of the 1999 Chi-Chi (Taiwan) earthquake presented by Dalguer et al. (2001a). The 

figure shows the maximum velocity and snapshots (from 1 to 12 sec. after the rupture starts) of the 

particle velocity fault parallel component. The dashed line represents the pre-existing fault. The 

computational domain is clearly showed by the maximum velocity figure (boundary between the 

yellow and green color). 
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6.2 Application of the 2D Model in the Present Thesis 
 

6.2.1 The effects of strength excess and critical slip on the near source ground motion of 

dipping faults that break the free surface. 

In the present thesis, the dynamic rupture process of a dipping fault that breaks the free-

surface is simulated in order to study the effects of the strength excess and critical slip on the near 

source ground motion. The purpose of this study is to show the importance in the choice of these 

parameters to the analysis of the near source ground motion when slip weakening model is used as 

a friction law in the dynamic simulation. 

Many numerical simulations of the dynamic rupture process of an idealistic dipping fault 

are developed. The problem is tackled in a plane strain condition. The fault model used for the 

dynamic simulation are shown in Fig. 6.2. The homogeneous medium is characterized with P wave 

velocity (6.1 km/sec), S wave velocity (3.5 km/sec), density 2700 kg/m3 and Poisson's ratio 0.25. 

The dip of the fault is 33o 41’, length 100km, the hypocenter is located at a depth of 28km.  
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Figure 6.2. Fault model used for the dynamic simulation of the rupture process of a dipping fault 

that breaks the free-surface 

 

The fault models are constructed taking into account the two sides of the fault. We assume 

that the fault has a thickness equivalent to the size of one cubic cell. Once the fault breaks, the 

linkage between the two surfaces of the fault is broken. The models used for the simulation (Figure 

6.2) include a pre-existing fault 100 km wide in a solid of 130km x 40km. The cubic cells of the 

DEM have 0.25 km long sides. 
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For all the models the stress drop keeps constant (∆τ=10MPa). The strength excess is 

represented by the parameter S (S=Strength excess/stress drop). 
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First the shear fracture energy G given by the equation 

 

cfu DG )(
2
1 ττ −=                                                             (6.2) 

is kept constant with G=1x107J/m2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Space-time of rupture propagation for different combinations of Dc and the parameter 

S, keeping constant the fracture energy G=1x107J/m2. 
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Fig 6.3 shows the space-time of rupture propagation for different combinations of Dc and 

the parameter S. The model with the highest rupture velocity (supersonic velocity) correspond to 

the model with Dc=1.90 and S=0.05. The model with the lowest rupture velocity correspond to the 

model with Dc=0.8 and S=1.5. The rupture velocity increases as S decreases and Dc increases. The 

model with Dc=1.33 and S=0.5 (green line in the Fig. 6.3) calls the attention because the rupture 

process of this model shows more irregular progress of the rupture near the free surface than the 

others models. In order to understand why the irregularity of this model, the shear stress changing 

in space and time is shown in Fig. 6.4. Fig. 6.4a shows the space-time of the shear stress during the 

rupture and Fig. 6.4b shows the shear stress on the fault for different times. As observed in Fig. 

6.4b, there are two permanent peaks of shear stress close each other during almost all the rupture 

process. The first peak corresponds to the main rupture front. The secondary peak is originated 

from the stress peak associated with the S wave velocity that propagates ahead of the mean rupture 

front. When this secondary stress peak reaches a critical value the fault break forming a secondary 

rupture front. These two ruptures front join in somewhere in the fault forming again one rupture 

front, but because the rupture velocity never overcomes the S wave velocity, the process repeats 

again. This suggests that the irregularity in the rupture process of this model is because the 

permanent creation of the two rupture fronts. When this mechanism approaches the free surface, the 

stress reflected from the free surface bumps the two rupture fronts (Fig. 6.4a) and contaminates the 

rupture process, originating a complex rupture mechanism. The effects of this irregular rupture 

process on the ground motion are considerable, as observed in the Fig. 6.5, where the peak velocity 

on the free-surface is shown. The model with irregular rupture process (green line) shows higher 

values in the vertical component even than the model with supersonic velocities in which they are 

expected to have the highest values. In the horizontal component the values are similar to the model 

with supersonic velocity, specially in the hanging wall. The models with subsonic velocity always 

show the lowest values. 

The results suggest the existence of a critical rupture velocity that can generate the strongest 

ground motion near the source. For the set of models used above, the model that propagate with this 

critical rupture velocity has Dc=1.33 and S=0.5, model with green line in Fig. 6.3, and 6.5 
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Figure 6.4. Shear stress changing in space and time during the progress of the dynamic rupture. (a) Space-time of the shear stress during the 

rupture; (b) Shear stress as a function of position along the fault for different times. 
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Figure 6.5. Comparison of the peak velocity on the surface between the models with 

different combinations of Dc and the parameter S, keeping constant the fracture energy 

G=1x107J/m2. 

 

 

Now lets look for more critical models keeping the parameter S=0.5 constant. Fig. 

6.6a shows the space-time of rupture propagation for different combinations of Dc and shear 

fracture energy G. The model with the smallest Dc values shows supersonic rupture 

propagation (red and yellow line), and the others models (red, black an green line) propagate 

with a rupture velocity around the 95% of the S wave velocity. These last three models show 

the same irregularity of rupture process analyzed before. Now lets observe again the effects 

on the ground motion. Fig. 6.6b shows the peak velocity on the free-surface for the models 

with S=0.5. As observed before, the models that have irregular rupture process present the 

highest values of peak velocity, even higher that the models with supersonic velocity. From 

these results the critical rupture velocity seems to be around 95% of the S wave velocity.  
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Figure 6.6. (a) Space-time of rupture propagation and (b) peak velocity on the surface for the models with different combinations of Dc and 

fracture energy G keeping constant the parameter S =0.5

(b)(a)
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The results suggest that the near source ground motion generated from the rupture process 

of dipping faults that break the free surface is strongly affected by the rupture velocity, that is, by 

the combination of the strength excess and critical slip. In general, higher rupture velocity produces 

stronger ground motion than slower rupture velocity. But when the rupture process reaches the 

critical rupture velocity (around 0.95Vs) the rupture becomes complex and the general expectation 

breaks, that is, the rupture in stage generates higher peak ground velocity than any others models, 

even than models with supersonic rupture velocity. 

In order to observe if the effect of the rupture process on the ground motion described 

above affect also to faulting when the rupture do not break the free surface, we developed the same 

models keeping constant the shear fracture energy G, but now the rupture is forced to stop 3 km 

before reaches the surface. The peak ground velocity shown in Fig. 6.7 show similar characteristics 

compared to the models that break the free surface (Fig. 6.5). Therefore, the effects of the critical 

rupture velocity on the ground motion are also important for the models that do not break the 

surface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7. Comparison of the peak velocity on the surface between the models with different 

combinations of Dc and the parameter S, keeping constant the fracture energy G=1x107J/m2, for the 

dynamic rupture process of dipping fault that do not reach the free-surface. 
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Finally we can conclude that the estimation of the parameters strength excess and critical 

slip is important to the analysis of the near source ground motion. From the results described above 

the rupture velocity strongly affects the near source ground motion, and the rupture velocity is 

highly dependent by the combination of the strength excess and critical slip, therefore, the right 

combination of this two parameters is important to for example explain some characteristics of the 

fault rupture, ground motion and damage pattern caused by a real earthquake. 

 

 

6.2.2. Simulation of new tensile cracks during a 2D dynamic shear rupture propagation. 

 

For the numerical tensile rupture simulation, it is assumed that the tensile stress 

concentrations resulting from the shear slip on the pre-existing fault cause the new cracks in mode I 

and propagates away from the pre-existing fault. Extension of a fracture will occur once the critical 

tensile fracture energy GIc has been reached or exceeded. The tensile fracture is governed by the 

constitutive relation tensile stress-strain formulated in the item 3.5. Steps include the formation of 

individual microcracks, propagation and linking of these cracks during the shear dynamic rupture 

process. 

The spontaneous inplane rupture is analyzed in a plane strain condition. A pre-existing fault 

has a length L=85km. The fault movement is assumed to be right-lateral slip. The dynamic 

parameters for the shear slipping are constant along the fault and they are adopted as follow: the 

stress drop ∆τ=10MPa, Strength excess= 5.0MPa and Critical slip Dc=0.5m. The rupture 

propagates bilaterally from the center of the fault with the stress drop constant everywhere on the 

shear crack plane. 

 For the generation of the tensile cracks, it is assumed that the critical fracture energy in 

mode I GIc=5x105J/m2 and a coefficient kr=1.5 (the definition of these parameters are given in item 

3.5). 

 A homogeneous medium with P wave velocity 6.1 km/sec, S wave velocity 3.5 km/sec and 

density 2700 kg/m3 is assumed. It correspond to a Young's modulus 8.37 x 1010 N/m2, Shear 

modulus 3.35 x 1010 N/m2 and Poisson's ratio 0.25. 

 The generation of the tensile cracks for the 2D in-plane problem is shown in the snapshots 

every one second during 16 seconds as observed in Fig. 6.8. The tensile cracks expand with the 

shear rupture growth and propagate from the tip of the shear crack. A large number of cracks are 

mainly generated on the dilatation side, as expected. The dilatation and compression sides are 
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specified by the positive sign (+) and negative sign (-) respectively as shown in the right inferior 

figure of Fig. 6.8. The length of the new cracks is increasing gradually from the origin (hypocenter) 

to the end of the fault. It could be observed that at the end of the pre-existing fault the tensile cracks 

are extending for largest distant forming branches of cracks. The final stage of the formation of the 

cracks is consistent with that observed in laboratory (e.g. Petit and Barquins, 1988) as well as the 

field observations (e.g. Vermilye and Scholz, 1998). 
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Figure 6.8. Snapshots (1 to 16 sec) of the shear rupture progress and generation of tensile cracks. 

The horizontal straight solid line is the shear crack and the irregular lines that leave the straight line 

are the tensile cracks. The signs (+) and (-) means dilatation and compression sides respectively. 
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Chapter 7 

 

Application of the Model in 3D 
 

 

7.1  Dynamic Rupture and Near Source Ground Motion Simulation of a 

Vertical Shallow Strike Slip Fault 
 

The numerical shear rupture simulation is obtained for the near-field elastodynamic motion coupled 

to frictional sliding on a pre-existing fault. Initially the stress distribution along the fault is at the 

initial stress level, the rupture is initiated artificially by imposing a stress drop in a limited small 

region, which leads to initial stresses along the fault that increase monotonically without any 

relative slipping along the fault. Eventually, the interface shear stress (τ.) at a point exceeds the 

local shear strength (critical stress level τu) and slip at a node occurs, governed by the slip 

weakening model shown in Figure (3.5) and represented by equation (3.13). Considering that the 

seismic radiation and slip depend only on the stress change (stress drop) during the earthquake, and 

not on the absolute stress, we assume that the initial stress (τo) along the fault is at its zero level. 

Therefore, the necessary parameters required to simulate the rupture process governed by the slip 

weakening friction model are the strength excess, stress drop and critical slip. 

 For the simulation, an idealistic pre-existing fault, in which shear rupture propagation 

occurs, is embedded at a depth of 3km from the free-surface. For analyzing a more realistic 

earthquake source, a fault with an asperity embedded in a stratified medium and located 1.5km 

from the top of the pre-existing fault is used. We call this model as asperity model. The parameters 

used for the 3D dynamic simulation and the geometry of the asperity fault model are shown in Fig. 
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7.1. We assume that an asperity is a zone with higher stress drop than surrounding areas. The 

dynamic parameters for the shear slipping are as follow: for the asperity area we assume stress drop 

∆τ=18MPa, Strength excess= 3.0MPa and Critical slip Dc=0.5m; and surrounding the asperity, 

stress drop ∆τ=2.5MPa, Strength excess= 3.0MPa and Critical slip Dc=0.15m. The velocity 

structure of the medium is shown in Table 7.1. The fault movement is assumed to be right-lateral 

slip. The model used for the simulation is a solid of 60km x 60km x 40km. The side of the cubic 

cells is 0.5 km long. 
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Figure 7.1 Fault model and parameters distribution used for the 3D dynamic simulation (asperity 

model) 

 

 

 
Table 7.1. Velocity structure for the asperity model 

 
Depth (km) Vp (km/s) Vs (km/s) ρ (kg/m3) 

0 - 2.5 
2.5 - 20 
20 - ~ 

4.5 
6.0 
6.7 

2.6 
3.5 
3.9 

2400 
2700 
2800 
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 The results of the shear rupture simulation are presented in snapshots of the slip and slip 

velocity every one second during 9 seconds as shown in Fig. 7.2 and Fig. 7.3 respectively. From 

these figures we can observe that the rupture grows faster in the in-plane direction, which is 

dominated by mode II. The rupture crosses the asperity from the bottom to the top. Around 4 to 5 

sec the rupture reaches the asperity. From this stage the slip and slip velocity increase considerably 

because the higher stress drop in the asperity area. The largest values of the slip are concentrated in 

the middle of the asperity (Fig. 7.2). In Fig. 7.3 we can observe that during the rupture process the 

slip velocity has its peak value in the rupture front. When the rupture is in the bottom of the 

asperity (around 4s) the slip velocity starts to has higher values and gradually increase while the 

rupture cross the asperity. The maximum values are reached around 6 second when the rupture is in 

the top of the asperity. The general characteristics of these results are consistent with the theoretical 

3D models presented in chapter 4, item 4.2. 

 

7.0sec 8.0sec 9.0sec 

4.0sec 5.0sec 6.0sec 

3.0sec 1.0sec 2.0sec  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2. Snapshots of the slip for the spontaneous shear rupture of the asperity model with 

asperity embedded H=1.5km from the top of the pre-existing fault (fig. 4.1). The time for each 

snapshot is shown on each picture. 
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Figure 7.3. Snapshots of the slip velocity for the spontaneous shear rupture of the asperity model 

with asperity embedded H=1.5km from the top of the pre-existing fault (fig. 4.1). The time for each 

snapshot is shown on each picture. 

 

 

 The horizontal and vertical ground motion on the surface caused by the dynamic rupture 

process is also calculated. Fig. 7.4 and Fig. 7.5 show the maximum of the displacements and 

velocity ground motion respectively. Note that the finite dimensions of the fault produce complex 

pattern of displacement and velocity at the ends of the fault. This pattern of ground motion is 

consistent with theoretical results caused by shallow vertical strike-slip faults (e.g. Lay and 

Wallace, 1995) 
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Figure 7.4. Maximum displacements ground motion on the surface caused by the dynamic 

spontaneous shear rupture of the asperity model with asperity embedded H=1.5km from the top of 

the pre-existing fault (fig. 4.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5. Peak  velocity ground motion on the surface caused by the dynamic spontaneous shear 

rupture of the asperity model with asperity embedded H=1.5km from the top of the pre-existing 

fault (fig. 4.1). 



 65

7.2   The Effects of the Generation of Tensile Cracks During the Dynamic Shear 

Rupture on the Shear Slipping and Near Source Ground Motion. 
 

As suggested before, shear rupture will propagate only along a weakness zone. In the 

present model, this zone is defined as a pre-existing fault, in which only shear slip, governed by a 

friction law, takes place. Additionally, the formation of tensile cracks during the shear rupture 

process is opened. The formulation is the same as explained for the problem in 2D (item 6.2.2), that 

is, for the numerical tensile rupture simulation, it is assumed that the tensile stress concentrations 

resulting from the shear slip on the pre-existing fault cause the new cracks in mode I and 

propagates away from the pre-existing fault. The mechanism of the tensile crack propagation is 

going to be governed by the low constitutive relation formulated in item 3.5,that is, extension of a 

fracture will occur once the critical tensile fracture energy GIc has been reached or exceeded. 

Now, numerically we want to study how the shear slipping and near source ground motion 

are affected by the distribution of generated tensile cracks. For this purpose, the same fault model 

of the previous item is used (Fig. 7.1). For the generation of the tensile cracks, it is assumed that the 

critical fracture energy in mode I GIc=5x105J/m2 and a coefficient kr=1.5 (the definition of these 

parameters are given in item 3.5). The results of the simulation are described as follow: 

In order to depict a general view of the total tensile cracks generated during the dynamic 

rupture process of the pre-existing fault, two perspective of the final stage of the cracks were drawn 

in Fig. 7.6. In Fig 7.6b it may be seen that the surface of the new cracks forms a flower structure on 

top of the fault and on the bottom of the asperity. But in the lateral sides of the fault and of the 

asperity, the cracks develop only in the dilatational side of the fault (Fig.7.6a). Fig. 7.6c shows a 

top view in which the cracks that reached the free-surface are observed. A detail explanation of the 

generation of the cracks will be presented in the next item. 

The effects on the shear slipping are observed in the snapshots of the slip and slip velocity 

every one second during 12 seconds of Fig. 7.7 and Fig. 7.8 respectively. Comparing these results 

with that obtained in the previous model (free of tensile cracks), the maximum slip was almost 

duplicated and the slip velocity was extending approximately for more four second. As observed in 

Fig. 7.8, the slip velocity has similar characteristics until around 6 seconds, after that, from 7 to 11 

second, there is some irregular slip, caused by the generation of the tensile cracks. 
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Figure 7.6. Three views of the final stage of cracks evolution for the model in which the asperit  is 

embedded H=1.5km from the top of the pre-existing fault (fig. 4.1). The red color represents the 

shear crack along the pre-existing fault while the blue color represents the tensile cracks: (a) view 

of new surface cracks developed from the sides of the fault and asperity; (b) view of the new 

surface cracks that develop a flower pattern. (c) surface rupture. 
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Figure 7.7. Snapshots of the shear slip for the model in which tensile cracks are generated. The 

asperity is embedded H=1.5km from the top of the pre-existing fault (see fig. 4.1). The time for 

each snapshot is shown on each picture. 
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Figure 7.8. Snapshots of the shear slip velocity for the model in which tensile cracks are generated. 

The asperity is embedded H=1.5km from the top of the pre-existing fault (see fig. 4.1). The time for 

each snapshot is shown on each picture. 
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 Now let see the effects on the near source ground motion. Fig. 7.9 and 7.10 show the 

maximum displacement and velocity ground motion on the free-surface respectively. The pattern of 

the ground motion suffers a drastic change, specially for the normal and vertical component. The 

cracks that reached the free-surface are the main responsible of this changing. The maximum values 

are concentrated along the rupture surface. The maximum displacements values of the normal and 

vertical components are almost duplicated, but the parallel component is almost the same (Fig.7.9). 

For the peak velocity values, the normal component also duplicate and the vertical component 

reach values almost four time the model free of cracks, but these maximums values are locally 

concentrated on the cracks that reached the free-surface. The parallel component keep almost the 

same values. 

 Finally we can conclude that the generation of tensile cracks strongly affects the rupture 

process of the fault and the near source ground motion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9. Maximum of the displacements ground motion on the surface caused by the dynamic 

spontaneous shear rupture for the model in which tensile cracks are generated. The asperity is 

embedded H=1.5km from the top of the pre-existing fault (see fig. 4.1). 
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Figure 7.10. Peak velocity ground motion on the surface caused by the dynamic spontaneous shear 

rupture for the model in which tensile cracks are generated. The asperity is embedded H=1.5km 

from the top of the pre-existing fault (see fig. 4.1). 

 

 

7.3   Generation of Tensile Cracks and how they Reach the Free-surface. 
 

We want to investigate numerically the formation of new cracks and how they reach the 

free-surface during an earthquake in a 3D model of a vertical strike slip shallow fault. For this 

purpose we assume that the pre-existing fault, in which shear rupture propagation occurs, is 

embedded at a depth of 3km from the free-surface. The fault movement is assumed to be right-

lateral slip. 

 Firstly, as shown in Fig. 7.11, a homogeneous fault model embedded in a homogeneous 

medium is used, that is, the dynamic parameters for the shear slipping are constant along the fault 

(stress drop ∆τ=7.5MPa, Strength excess= 2.0MPa and Critical slip Dc=0.2m). The medium is 
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characterized by a set of P wave velocity 6.1 km/sec, S wave velocity 3.5 km/sec and density 2700 

kg/m3. This model is called “homogeneous model”. 
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Figure 7.11 Homogeneous fault model and parameters distribution used for the 3D dynamic 

simulation. 

 

 

 For analyzing a more realistic earthquake source, a fault with an asperity embedded in a 

stratified medium is used, the geometry and the dynamic parameters of the fault model are the same 

as the model used in the item 7.1 (Fig. 7.1). The velocity structure of the medium is shown in Table 

7.1. This model is called as “asperity model”.  

In order to study the effects of the asperity location on the propagation of new cracks, four 

cases with different asperity depth are simulated. In these models the distance H from the top 

boundary of the fault to the top boundary of the asperity area (Fig. 7.1) is taken as H=4.0km, 

H=3.0km, H=2.0km and H=1.5km respectively. The last model is the same analyzed in the item 

7.2. 

 The results for the homogeneous model are shown in Figs. 7.12 to 7.14. Fig. 7.12 shows 

two views of the final stage of the new cracks. It may be seen that from the ends of the pre-existing 

fault new tensile cracks grew, forming very well defined new fractures, in a flower pattern 

structure.  
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Figure 12. Two perspectives of the final stage of the cracks evolution for the homogeneous model. 

The red color represents the shear crack on the pre-existing fault and the blue color represents the 

tensile cracks: (a) view of the new surface cracks that grew from the sides of the fault; (b) view of 

the new surface cracks originated from the bottom and top boundaries of the fault that develop a 

flower structure 

 

 

Figs 7.13a and 7.13c, present bird eye’s views and an outline view of the fault, respectively, 

showing that the orientation of the new cracks across the pre-existing fault is asymmetric for the in-

plane direction (mode II, Fig. 7.13a) and symmetric for the anti-plane (mode III, Fig. 7.13c). It is 

interesting to note, as shown in Fig. 7.12, that the pattern of new cracks (flower structure) formed 

from the top of the fault (near the free surface) is different from the pattern observed at the bottom. 

On the top of the fault, along the strike direction, two surfaces are generated symmetrically from 

the border of the two side of the fault forward the free-surface. On the other hand, from the bottom 

of the fault, four new surface are generated, two of them symmetrically from the border of the fault 

forward the depth; but the others two surfaces are generated asymmetrically ahead of the free-

surface, that is, they generate only from one side of the fault in the tensile zone of the in-plane 

mode. These characteristics are clearly observed in the vertical cross section (VS1, VS2 and VS3) 
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shown in Fig.7.14, the location of these sections is specified in Fig. 7.13a. The horizontal section 

(SH1) shown in Fig. 7.14 correspond to the middle of the fault as shown in Fig.7.13b and 7.13c, the 

cracks are developed on the dilatational side of the in-plane direction. The difference between the 

new cracks patterns generated at the top and the bottom of the fault may be attributed to the free-

surface effects. The surface rupture is shown on the right-bottom side of Fig. 7.14, corresponding to 

the two surface cracks originated from the top of the fault. The location of the dilatation or tensile 

compression sides of the in-plane direction is specified in Fig. 5. 
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Figure 7.13. Views of the final stages of the cracks evolution for the homogeneous model: (a) 

Bird's eye view; (b) frontal view (V1); (c) outline view (V2) 
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Figure 7.14. Vertical cross sections VS1, VS2, VS3, horizontal cross section HS1 and surface 

rupture of the final stages of cracks evolution for the homogeneous model. The location of the 

sections are specified in Fig. 7.13. The thick straight solid line is the shear crack and the irregular 

lines that leave the thick straight line are the tensile cracks. 

 

 

 The simulation of new cracks corresponding to the asperity model, for the four cases 

considered, is shown in Figs.7.15 to 7.20. The bird’s eye view, frontal view and side view of the 

pre-existing fault are shown in Figs. 7.15 to 7.18 for the models with H=4km, H=3.0km, H=2.0km 

and H=1.5km, respectively. These figures show a general view of the cracks. As also observed in 

the homogeneous model, the cracks develop asymmetrically in the in-plane direction (mode II) and 

symmetrically in the anti-plane (mode III). The frontal view (Fig.7.15b to 7.18b) shows a 

concentration of cracks in the asperity zone. In general, all four cases present the same 

characteristics, that is, the cracks grow mainly from the borders of the asperity zone, and from the 

top and lateral sides of the fault. No significant cracking occurs along the lower edge, in contrast 

with results found for the homogeneous model. This may be due to the fact that the stress drop in 

the homogeneous model is larger than that in the surrounding area of the asperity. 
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Figure 7.15. Views of the final stage of the cracks evolution for the asperity model with H=4.0km: 

(a) Bird's eye view; (b) frontal view (V1); (c) outline view (V2) 
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Figure 7.16. Views of the final stage of the cracks evolution for the asperity model with H=3.0km: 

(a) Bird's eye view; (b) frontal view (V1); (c) outline view (V2) 
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Figure 7.17. Views of the final stage of the cracks evolution for the asperity model with H=2.0km: 

(a) Bird's eye view; (b) frontal view (V1); (c) outline view (V2) 
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Figure 7.18. Views of the final stage of the cracks evolution for the asperity model with H=1.5km: 

(a) Bird's eye view; (b) frontal view (V1); (c) outline view (V2) 
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 Fig. 7.19 shows the vertical cross sections VS1, VS2 and VS3 for the four cases. The 

location of these sections is specified in Fig. 7.15a to 7.18a. The section along the middle of the 

asperity (VS2), for all the models, shows that the cracks, developed from the top of the fault and 

from the top and bottom of the asperity, are generated symmetrically at the two sides of the fault. 

On the other hand, the sections located outside the asperity (VS1 and VS3) show the generation of 

asymmetric cracks. Even the sections VS1 and VS3 are located outside the asperity, they show that 

the lowest cracks occur at a depth corresponding to the same level of the bottom of the asperity, 

whereas the significance upper cracks are originated only from the top of the fault. The crack 

developed from the bottom and top of the asperity has the same length for all the models, as shown 

in section Vs2. On the contrary, the length of the cracks originated from the top of the fault (section 

VS1, VS2 and VS3) and from the bottom part outside the asperity (section VS1 and VS3) increase 

as the asperity approaches the top of the fault. This increment of length is small for the bottom 

cracks, while it is very large for the upper cracks. The crack from the top of the fault developed 

symmetrically from the two sides of the fault across the middle of the asperity (Section VS2), while 

it is asymmetric outside the asperity (Sections VS1 and VS2). This asymmetry is the same for the 

models with H=4.0km, 3.0km and 2.0km, while for the model with H=1.5km the asymmetry is 

inverted, possibly because the cracks originated from the top of the asperity of the model with 

H=1.5km extend until reaching a level –2.5km, which exceeds the level of the top boundary of the 

fault, equal to –3.0km. Once the cracks that come from the top of the asperity extend beyond the 

top boundary of the fault, these cracks and those originated from the top of the fault advance in 

parallel. This phenomenon may cause an inversion of the increment of the tensile stress on the two 

side of the fault, consequently, the asymmetry of the cracks developed from the top of the fault 

could be also inverted, as occurs in the model with H=1.5km shown in sections VS1 and VS3. 

 The results suggest that the effects of the asperity on the generation of cracks originated 

from the top boundary of the fault increase as the asperity approaches it. It may be clearly seen that 

for the model with H=4.0km and 3.0km, the effects of the asperity is slight, while for the model 

with H=2.0km and 1.5km they largely increase. 
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Figure 7.19. Vertical cross sections VS1, VS2 and VS3 for the four cases of the asperity model. 

The location of these sections is specified in Fig. 7.15a to7. 18a 
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 Fig. 7.20 shows the horizontal cross sections HS1, HS2 and the Surface Rupture for the four 

cases. Sections HS1, located in the middle of the asperity as specified in Fig. 7.15b,c to 7.18b,c for 

all the models respectively, show similar characteristics, that is, the new cracks extend from the end 

of the fault and from the end of the asperity on the dilatational side of the pre-existing shear fault. 

Sections HS2, located at a 1.0km depth from the free-surface, as specified in Figs. 7.17b,c to 

7.18b,c; show the cracks originated from the top of the fault for the models with H=2.0km and 

H=1.5km; while the cracks of the other two models do not reach this level. The purpose of Section 

HS2 is to show the difference of crack extension between the models with H=2.0km and H=1.5km. 

The trace of these cracks, located approximately 2.5 km from the fault, for the model with 

H=2.0km is parallel to the pre-existing fault and extend to the dilatational side. On the contrary, in 

the model with H=1.5km, the cracks extension is opposite. As explained before, this could happen 

because the increment of the tensile stress around the top of the fault is inverted on the two sides of 

the fault. This inversion is probably due to the proximity of the asperity to the top of the fault. The 

cracks originated from the asperity reach the top of the fault and from there they extend parallelly 

to the cracks originated from the top of the fault. 

 The surface rupture, as shown in Fig. 7.20, is observed only for the models with H=2.0km 

and H=1.5km. The cracks of the model with H=2.0km reach the free-surface in a small zone 

approximately 3.0km from the center of the trace of the pre-existing fault. On the other hand, the 

model with H=1.5km generates surface rupture of along 6.5km on the two side of the fault. The 

limiting conditions for the new cracks to reach the free-surface seems to be when the asperity is 

located between 2.0km and 1.5km below the top of the fault, of course, for the conditions given in 

the problem. 
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Figure 7.20. Horizontal cross sections HS1, HS2 and Surface Rupture for the four cases of the asperity model. The sections HS1 are specified in 

Fig. 7.15b,c to 7.18b,c for each case respectively, and the sections HS2 are specified on Fig. 7.17b,c and 18b,c for the cases with H=2.0km and 

H=1.5km respectively. 
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Chapter 8 

 

Generation of Tensile Cracks by the Dynamic 

Shear Rupture Process during the 2000 

Tottori Earthquake 
 

 

8.1 Introduction 
 

The 2000 Tottori (Japan) earthquake (Mj= 7.3) was originated on fault plane with strike N150E and 

a dip 90o  (Fig. 8.1). Small traces of surface breaks parallel and away to the trace of the main fault 

were found during the field observation developed by Fusejima et al. (2001) after the earthquake 

(Fig. 8.2). The study of seismic reflection survey around the 2000 Tottori earthquake area 

developed by Inoue et al. (2001) suggests the existence of fractures developed as a flower structure 

near the free-surface (Fig. 8.3). From these two investigations we can imply that some of the small 

cracks observed on the free-surface (Fig. 8.2) could correspond to the possible fracture developed 

as a flower structure during the Tottori earthquake. In order to get a better understanding of the 

surface rupture caused by this earthquake, a full shear dynamic rupture process is numerically 

simulated. The additional feature in the problem under consideration is the possibility of 

introducing internal new cracks that propagates under tensile stress as a consequence of the 

dynamic process of the shear slip propagation. As presented in the previous chapter (chapter 7) the 

generation of tensile cracks during a shear slipping in a shallow strike slip could form a flower 

structures and some of these cracks could reach the free-surface. 
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Figure 8.1. Map of the Tottori area. The straight line is the location of the fault model of the 2000 

Tottori earthquake used for the simulation and the triangles are the stations records of Kiknet and 

Knet used for comparison. 
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Figure 8.2. Surface rupture near the epicenter area of the 2000 Tottori earthquake. After the field 

observation developed by Fusejima et al. (2001). 
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Figure 8.3. (a) Seismic profile until 5 to 6km depth corresponding to the Line B developed by 

Inoue et al. (2001). The straight lines show discontinuities like a flower structure in approximately 

2 km depth. (b) Location of the Line B. The straight line is the projection of the fault model for the 

simulation of the 2000 Tottori earthquake. The start is the epicenter. 
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 For the 3D shear dynamic rupture process simulation of the Tottori earthquakes we need to 

know: the geometry of the fault, and for the assumption of a slip weakening friction law, we need 

to define the stress drop, the strength excess and the critical slip along the fault. The direct 

estimation of these source parameters from observations are not feasible, the closest information 

about the source that we have is the results of the kinematic waveform inversion given by the slip 

distribution along the fault. In this context, we use the dynamic parameters calculated in the chapter 

5 (item 5.2) in which the kinematic source model of Iwata et al. (2000) was used as a data.  The 

dynamic stress drop distribution (Fig. 5.5a) and the strength excess (Fig 5.6) are used. For the 

critical slip (Dc) distribution, the values given by Fig. 5.7a are used, but with the assumption that a 

maximum Dc =2.0m is permitted (after many simulations for values greater than Dc =2.0m, we get 

very low frequency ground motion not consistent with the observation records). The velocity 

structure used for the simulation is shown in Table 5.1. In order to simulated the surface rupture, 

shown in Fig. 8.2, and according to the results presented in the chapter 7 in which the surface 

rupture comes from the flower structure developed from the top of the fault; it is assumed that the 

pre-existing fault, defined by the kinematic model (Iwata et al 2000), is embedded at a depth of 2 

km from the free-surface as shown in Fig. 8.4. The model used for the simulation is a solid of 

117km x 117km x 40km. For this it is need 4380480 cubic cells with 0.5 km long sides of each 

cubic cell. For the generation of the tensile cracks, it is assumed that the critical fracture energy in 

mode I, GIc, changes with depth according to the velocity structure given in Table 5.1. That is, for 

the first layer GIc=10x105J/m2, second layer GIc=4x105J/m2 and for the third layer GIc=3x105J/m2. 

The coefficient kr=1.5 is constant. 
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Figure 8.4. Fault model embedded at a depth of 2km from the free-surface used for the 3D 

dynamic simulation of the 2000 Tottori earthquake. The fault shows the distribution of the dynamic 

stress drop calculated in the chapter 5 (item 5.2) and show in Fig. 5.5a. 
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8.2 Simulation Results of the Distribution of Tensile Cracks and Surface 

Rupture 
 

The final results of the generation of tensile cracks are shown in Figs. 8.5 to 8.8. Fig. 8.5 

shows from the two sides of the fault two views in perspective of the final stage of the new cracks. 

Since the rupture is not a pure strike slip and the dynamic parameters distributions are very 

heterogeneous (Fig. 5.5 to 5.7), it may be seen that the new cracks grew from the two side of the 

fault following different patterns and forming new fractures as a complex flower structure. As 

observed in Figs 8.6a and 8.6c, in which bird eye’s views and an outline view of the fault 

respectively are presented, the orientation of the new cracks across the pre-existing fault is not 

symmetric. From these figures and from the frontal view of Fig. 8.6b, the tensile cracks are 

generated mainly from the asperity zone (area of highest values of stress drop) and from the top of 

the fault.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5. Two perspectives of the final stage of the cracks evolution for the 2000 Tottori 

earthquake dynamic simulation. The red color represents the shear crack on the pre-existing fault 

and the blue color represents the tensile cracks 
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Figure 8.6. Views of the final stage of the cracks evolution for the 2000 Tottori earthquake 

dynamic simulation: (a) Bird's eye view; (b) frontal view (V1); (c) outline view (V2) 

 

 

The complex flower structure developed from the pre-existing fault are clearly observed in 

the vertical cross section (VS1, VS2, VS3, VS4 and VS5) shown in Fig.8.7, the location of these 

sections is specified in Fig. 8.6a. Section VS1 shows a few cracks, this zone has lower values of 

stress drop. Sections VS2 and VS4, located symmetrically from the center of the fault, show similar 

characteristics, that is, from the right side of sectionVS2 and left side of VS4 one main crack is 

developed originated from around 7.5km depth growing toward the free-surface. From the left side 

of VS2 and right side of VS4, two main cracks are developed, one originate from around 5km depth 

and grows toward the depth and the other one originates from the top of the fault and grow towards 

the free-surface. This second one, in the section VS4, reaches the free-surface while in VS2 the 

crack stops very close to the free-surface. It could be observed also in both sections the 

development of one small crack originated from the bottom of the fault. The cracks originated in 

section VS4 extend larger distance than those originated in the section VS2. Section VS4 also 
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shows de development of more cracks than in VS2. This difference between these two sections is 

mainly because the section VS4 is located in the main zone of the asperity. Section VS3, located in 

the middle of the fault, shows small cracks originated mainly along the asperity and top of the fault. 

Section VS5 shows two main cracks, one originated from around 14km depth (left side) and the 

other one (right side) from the top of the fault, both grows toward the free-surface. The crack 

developed from the top of the fault reaches the free-surface. 
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Figure 8.7. Vertical cross sections VS1, VS2, VS3, VS4 and VS5 of the final stage of the cracks 

evolution for the 2000 Tottori earthquake dynamic simulation. The location of these sections is 

specified in Fig. 8.6a 
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The surface rupture and horizontal cross section (HS1, HS2, HS3 and HS4) are shown in 

Fig. 8.8, the location of these sections is specified in Fig. 8.6b and 8.6c. The main characteristic of 

all these sections is that the new cracks extend from the asperity and in an asymmetric way from 

the two sides of the fault, that is, the cracks originate in the same point of the two side of the fault, 

but the extension is opposite. 

The faulting generated a surface rupture on only one side of the fault of along 10.0km 

parallel to the trace of the main fault and 2.0km distance from the fault. These surface rupture 

crosses to the other side of the fault at the middle of the fault. The section HS1, located 0.7 km 

depth from the free-surface, shows cracks parallel to the fault on the two side of the fault. The 

surface rupture and the cracks from section HS1 correspond to the flower structure generated from 

the top of the fault. The section HS2 and HS3, located 5km and 10.0km depth respectively, crosses 

the main part of the asperity zone. The cracks are generated in an opposite pattern compared with 

the section HS1. Section HS4, located 15km depth and outside of the asperity, shows smalls and a 

few cracks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HS1 HS2

HS3 HS4

Surface Rupture 

Figure 8.8. Surface Rupture and horizontal cross sections HS1, HS2, HS3 and HS4 of the final 

stage of the cracks evolution for the 2000 Tottori earthquake dynamic simulation. The location of 

these sections is specified in Fig. 8.6b and c 
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8.3 The Tensile Crack Simulation Associated with Observation and After Shock 

Distribution. 
 

As mentioned in the introduction of this chapter, during the field observation developed by 

Fusejima et al. (2000) after the 2000 Tottori (Japan) earthquake, several small cracks were found on 

the free-surface parallel to the causative fault. Some of these cracks could correspond to the 

possible flower structures that could be originated during the rupture process of the Tottori 

earthquake. The surface rupture simulated in the previous section is similar to some of the trace of 

the cracks found in the field as observed in Fig. 8.9. 
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Figure 8.9. Surface rupture observed by Fusejima et al. (2000) in the field (a) associated with the 

surface rupture simulated (b) 
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 The hypothesis of the development of a flower structure is supported by the study of seismic 

reflection survey around the 2000 Tottori (Japan) earthquake area developed by Inoue et al. (2001), 

as observed in Fig. 8.3. From the tomographic slices of P wave velocity at different depths (Fig. 

8.10) developed by Aben et al. (2001), the first two images (0.0km to 2.0km) also suggest the 

existence of a flower structure near the free-surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.10. Tomographic slices developed by Aben et al. (2001) at different depth showing P 

wave velocity and aftershock distribution of the 2000 Tottori earthquake. The first two images 

(0.0km to 2.0km) suggest the existence of a flower structure near the free-surface because the 

strong discontinuity of lower values of P waves velocity in localized zone around the causative 

fault. 
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Figure 8.11. aftershock distribution associated with the simulated cracks: (a) Bird's eye view of 

aftershock associated with the horizontal section HS1 and HS2 of cracks (see Fig. 8.8). (b) Vertical 

distribution (section V-V’) of aftershock associated with the outline view V2 (see Fig. 8.6c) and 

vertical cross sections VS4 and VS5 of cracks distribution (see Fig. 8.7) 
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 The new surfaces of tensile cracks could be the zone of the shear slipping as a second step 

of the formation of cracks. This idea, as explained before in chapter 3 (item 3.1), comes since 

Scholz, (1968) and Lajtai, (1971), in which they conclude that the shear cracks develop as a plane 

of shear failure only after a long history of tensile microfracturing. Steps include the formation of 

individual tensile microcracks, propagation and linking of these cracks and finally larger scale 

shear failure. In this context, it suggests that some of the cracks opened during the Tottori 

earthquake simulation could be zone of aftershock. In Fig. 8.11 we associates some of the cracks 

with the after shocks distribution. In Fig. 8.11a, in which shows the bird's eye view of aftershock 

distribution, could be observed swarm of events that follow approximately the traces as specified 

by the white line. This part of aftershock could be related to the cracks of section HS1 and HS2, as 

show in Fig. 8.11a. The vertical view (section V-V) of the aftershock distribution (Fig. 8.11b) could 

be associated to the cross section VS4 and VS5 and the outline view V2 (see Fig. 8.6c) of cracks 

distribution as observed in Fig. 8.11b. If these cracks correspond to the zone of the aftershocks, the 

cracks simulated could have been extended and be larger during the real earthquake, as specified 

with the dashed line in the vertical view (section V-V) of aftershock distribution (Fig. 8.11b). 

 

 

8.4. Simulation of Near Source Ground Motion from the Shear Rupture Process 

and Tensile Cracks Generation: Comparison with a Model that does not 

Generate Tensile Cracks 
 

A model in which no tensile cracks are generated is also simulated. Fig. 8.12 shows 

snapshots every 2 seconds during 14 seconds of the shear slip distribution along the fault for the 

model in which tensile cracks were generated and for the model without cracks. The rupture 

process of the two models shows similar characteristics until around 8 seconds, after that the model 

wit cracks starts to develop higher values of slip. The final stage of the slip shows that the model 

with cracks slips almost twice the model without cracks. Similar characteristics could be observed 

in the snapshots of slip velocity shown in Fig. 8.13. From this figure, around 8.0 seconds, could be 

observed that the model with cracks generate additional slip velocity in the borders of the fault, it 

could be caused by the generation of cracks. The final slip distribution of the two models is also 

compared with the final slip distribution of the kinematc model (Fig. 8.14). The maximum value of 

the model without cracks is slightly higher than the kinematic model. But the model with cracks 

shows the highest values, as mentioned before, almost twice the model without cracks. 
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Figure 8.12. Snapshots every 2 seconds during 14 seconds of the shear slip distribution along the 

fault for the model in which tensile cracks were generated and for the model without cracks. 
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Figure 8.13. Snapshots every 2 seconds during 14 seconds of the shear slip velocity distribution 

along the fault for the model in which tensile cracks were generated and for the model without 

cracks. 
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Figure 8.14. Final slip distribution of the fault model of the 2000 Tottori earthquake simulation: (a) 

Kinematic model calculated by Iwata et al (2000); (b) Dynamic model free of tensile cracks; (c) 

Dynamic model in which tensile cracks are generated. 
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 The maximum displacement and velocity ground motion of the two models are shown in 

Fig. 8.15 and 8.16 respectively. The pattern of the ground motion of the model with cracks 

compared to the model without cracks suffers a drastic change in all the components. The 

maximum values of the displacements are around twice the model without cracks (Fig. 8.15). For 

the peak velocity values (Fig. 8.16), the maximum values of the model with cracks are locally 

concentrated on the cracks that reached the free-surface. 
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Figure 8.15. Maximum displacements ground motion on the surface (a) caused by the dynamic 

model free of cracks; (b) caused by the dynamic model in which tensile cracks are generated. 
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Figure 8.16. Peak velocity ground motion on the surface (a) caused by the dynamic model free of 

cracks; (b) caused by the dynamic model in which tensile cracks are generated. 
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 In order to validate the dynamic simulation studied here, the waveform simulated using the 

model with cracks and without cracks is compared with the ground motions recorded by the Kiknet 

and Knet. Figs. 8.1shows the location of all the stations used for comparison. Fig. 8.17 and 8.18 

show the comparison with the stations of Knet for the model without cracks and cracks 

respectively. Fig. 8.19 and 8.20 show the comparison with the station of Kiknet for the model 

without cracks and cracks respectively. In general, the simulations using the two models fit well the 

observations. The comparison with the station records are in the frequency range of 0.05 to 0.5 Hz. 

 Now lets compare the waveform between the two models. Fig. 8.21 and 8.22 show the 

waveform simulated using the two models for the corresponding location of Knet and Kik net 

stations respectively in a frequency range of 0.05 to 0.5 Hz. It could be observed that the model 

with cracks generates shorter wavelengths than the model with cracks in almost all the stations. 

This difference of wave between the two models could be observed more clearly in Fig, 8.23 and 

8.24, in which the waves are not filtered. These results suggest that the model with cracks predicts 

ground motions with higher frequency content than the model without cracks. This difference 

between the two models is highest near the fault, as observed in the waveforms corresponding to 

the station TTRD02 of Kiknet (Fig. 8.24), in which the waveform of the model with cracks is very 

larger than the model without cracks. 
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Figure 8.17 Comparison of the velocity ground motion simulation with stations records of Knet in 

frequency range of 0.05Hz to 0.5Hz.  The simulation corresponds to the model free of tensile 

cracks. Red line is the simulation and black line is the recorded. 
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Figure 8.18 Comparison of the velocity ground motion simulation with stations records of Knet in 

frequency range of 0.05Hz to 0.5Hz.  The simulation corresponds to the model in which tensile 

cracks are generated. Red line is the simulation and black line is the recorded. 
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Figure 8.19 Comparison of the velocity ground motion simulation with stations records of Kiknet 

in frequency range of 0.05Hz to 0.5Hz.  The simulation corresponds to the model free of tensile 

cracks. Red line is the simulation and black line is the recorded 
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Figure 8.20 Comparison of the velocity ground motion simulation with stations records of Kiknet 

in frequency range of 0.05Hz to 0.5Hz.  The simulation corresponds to the model in which tensile 

cracks are generated. Red line is the simulation and black line is the recorded. 
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Figure 8.21 Comparison of the velocity ground motion simulation between the model in which 

tensile cracks are generated (red line) and the model free of tensile cracks (black line). The 

comparison is in the frequency range of 0.05Hz to 0.5Hz. The waveforms simulated correspond to 

the location of Knet stations. 
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Figure 8.22 Comparison of the velocity ground motion simulation between the model in which 

tensile cracks are generated (red line) and the model free of tensile cracks (black line). The 

comparison is in the frequency range of 0.05Hz to 0.5Hz. The waveforms simulated correspond to 

the location of Kiknet stations. 
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Figure 8.23 Comparison of the velocity ground motion simulation between the model in which 

tensile cracks are generated (red line) and the model free of tensile cracks (black line). The 

waveforms are not filtered. The waveforms simulated correspond to the location of Knet stations. 
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Figure 8.24 Comparison of the velocity ground motion simulation between the model in which 

tensile cracks are generated (red line) and the model free of tensile cracks (black line). The 

waveforms are not filtered. The waveforms simulated correspond to the location of Kiknet stations. 
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Chapter 9 

 

Conclusion 
 

The adequacy of the Discrete Element Method (DEM) to simulate a shear dynamic rupture 

process using 2D and 3D models has been firmly established. The problems analyzed to verify the 

adequacy of the DEM for the 2D and 3D model to simulate a dynamic rupture process were very 

well resolved by the DEM, the results are very consistent with the solutions presented in the 

specialized literature. On the other hand, the patterns of new tensile cracks originated during a 

dynamic shear rupture simulations is consistent with those observed in laboratory (e.g. Petit and 

Barquins, 1988) as well as in the field (e.g. Vermilye and Scholz, 1998), in which the tensile cracks 

often tend to develop kinking or wing cracks from the end of a shear sliding plane. In this context, 

the 2D and 3D DEM can be used very effectively to study the spontaneous shear rupture 

propagation in a fault model embedded in an elastic medium and the generation of new tensile 

cracks. 

As far as the author know, the present paper contains the first numerical simulation in 3D of 

the generation of tensile cracks during the dynamic shear rupture process along a pre-existing fault 

in an earthquake. Earlier simulations in 2D have been presented by Yamashita (2000) using a 

dynamic model and Vermilye and Scholz (1998) and Reches and Lockner (1994) using a quasi-

static analysis. Since the rupture process of an earthquake involves a fracture dynamics problem, 

the superposition of the three basic modes of rupture (Mode I, II and III) is required to describe the 

most general case of dynamic rupture propagation. The assumptions that the new cracks are 

generated only by tension (mode I) and that shear sliding (mode II and III) take place only along a 

pre-existing fault are very well accounted by the DEM. 
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9.1. Two Dimensional Model 
 

 For the application in 2D, the simulation of the spontaneous shear rupture propagation in a 

dipping fault that reaches the free-surface show that the estimation of the parameters strength 

excess and critical slip is important to the analysis of the near source ground motion. From the 

results we conclude that the rupture velocity strongly affects the near source ground motion, and 

the rupture velocity is highly dependent of the combination of the strength excess and critical slip. 

Furthermore, the results suggest that for some combination of these parameters the rupture 

propagates with a critical rupture velocity that can generate the strongest ground motion near the 

source, this critical rupture velocity seems to be around 95% of the S wave velocity. Therefore, the 

right combination of these two parameters is important to for example explain some characteristics 

of the fault rupture, ground motion and damage pattern caused by a real earthquake. 

The simulation of tensile cracks during a spontaneous shear dynamic rupture in 2D shows 

that the tensile cracks expand with the shear rupture growth and propagate from the tip of the shear 

crack on the dilatational side of the fault. In addition, the expansion of the new cracks at the end of 

the pre-existing fault extends for larger distance forming complex branches of crack patterns, 

phenomenon observed for the first time in a numerical analysis. 

 

9.2. Three Dimensional Model 
 

For the application in 3D, it was show that the DEM could be also used for the estimation of 

the dynamic parameters, such as: the dynamic and static stress drop, strength excess and critical slip 

recovered from the kinematic source model. It was applied for the 2000 Tottori earthquake. The 

strength changes (stress drop and strength excess) calculated for this earthquake show important 

characteristics of the stress changes associated with the foreshocks and aftershocks distribution. It 

was found that most of the foreshocks and aftershocks are located in the zone of negative and zero 

stress drop, in the surrounding area of the main asperity. It suggests that the asperity was a barrier 

during the foreshocks, and after the main shock, the stress in the area surrounding the asperity 

increased and triggered most of the aftershocks. The interesting thing is that the seismic activity 

before the mainshock was confined to a finite zone localized in the central part of the fault. From 

the strength excess and stress drop distributions we found that this confined zone probably was 

bordered by barriers, these barriers being possibly responsible for arresting the rupture process of 

these previous events.  
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For the generation of tensile cracks during a spontaneous shear dynamic rupture in 3D, a 

theoretical vertical strike slip fault embedded at a depth of 3km from the free-surface was used. For 

a homogeneous model (with no asperity) the significant cracks extend from the borders of the fault 

forming a flower structure. For an asperity model the new tensile cracks are mainly generated from 

the borders of the asperity and from the border of the pre-existing fault. The variation of the 

asperity location with depth strongly affects the cracks generated from the top of the fault. As 

closer the asperity to the top of the fault as more the effects on the cracks. For the conditions set in 

the asperity model, the fault with an asperity located between 2.0km and 1.5km from the top of the 

fault is the minimum condition to the cracks reaches the free-surface. It was also found that the 

generation of tensile cracks strongly affects the rupture process of the fault and the near source 

ground motion. Compared to a model free of tensile cracks, the shear slip is almost duplicated and 

the rupture duration is extended for more time. And also the pattern of the ground motion suffers a 

drastic change, specially for the normal and vertical component. 

 Finally, our method using the DEM is applied to the 2000 Tottori earthquake. In order to 

simulate the generation of new cracks, the pre-existing fault defined by the kinematic source model 

of Iwata et-al (2000) was embedded at a depth of 2km from the free-surface. Since the rupture is 

not a pure strike slip and the dynamic parameters distributions are very heterogeneous, from the 

results it may be seen that the new cracks grew from the two side of the fault following different 

patterns and forming new fractures as a complex flower structure. The new cracks are generated 

mainly from the asperity zone (area of highest values of stress drop) and from the top of the fault. 

The faulting generated a surface rupture on only one side of the fault parallel to the trace of the 

main fault and 2.0km distance from the fault. The trace of this surface rupture corresponds to some 

of the several cracks found on the field observation developed by Fusejima et al. (2000). An also 

the simulation of the development of a flower structure is supported by the study of seismic 

reflection survey around the 2000 Tottori (Japan) earthquake area developed by Inoue et al. (2001) 

and Aben et al. (2001), in which from these studies the existence of a flower structure near the free-

surface could be implied. Some of the new cracks is also associated with the aftershocks 

distribution, suggesting that some of the cracks opened during the shear rupture could be the zone 

of potential aftershocks. It is expected since we accept that the shear cracks develop as a plane of 

shear failure only after a long history of tensile cracks. Steps include the formation of individual 

tensile microcracks, propagation and linking of these cracks and finally larger scale shear failure or 

fault zone.  

The effects of the generation of tensile cracks on the near source ground motion were also 

observed comparing with a model free of tensile cracks. The pattern of the ground motion suffers a 
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drastic change in all the components. It was also observed that the model with cracks predicts 

ground motions with higher frequency content than the model free of cracks. 

In order to validate the dynamic simulation of the Tottori earthquake studied here, the 

waveform simulated using the model with cracks and without cracks is compared with the ground 

motions recorded by the Kiknet and Knet. In general, the simulations fit well the observations in a 

frequency range of 0.05 to 0.5 Hz. 

 Finally we can conclude that the proposed technique for the numerical analysis of the full 

dynamic rupture process including the generation of tensile cracks during an earthquake leads to 

truly encouraging results. The model and the results presented in this thesis show that the DEM 

could be used successfully in predicting near source ground motion, fracture behaviour during an 

earthquake and the formation of new fault zones. 
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Appendix 
 

 

A.1 Determination of the Equivalent Stiffness of the Normal and Diagonal Bars 

of the DEM 
 

The determination of the equivalent axial stiffness of the elements in a cubic lattice array, as 

shown in Figure 2.1 (Equation.2.1 and 2.2), in terms of the elastic properties of an equivalent 

isotropic continuum is reviewed here. This equivalence was shown by Nayfeh and Hefzy (1978) 

and first employed in dynamic problems by Riera (1982) 

The stress-strain equations for a general elastic body may be written in the compact form 

 

)6...1,( == jiC jiji εσ                                                   (A1) 

 

where σij and εj are the independent six components of the stress and strain tensors, respectively, 

and Cij, is the matrix of elastic constants, containing 21 independent constants on account of 

symmetry considerations. 

For an isotropic material, the matrix Cij could be a function of only two independent constants, 

so Cij can be written as: 
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in which C11, C12 and C44 are functions of Young’s modulus E and the Poisson’s ratio ν. 

 

Since the DEM implies a lattice-type structure consisting of one dimensional axial elements, 

the contribution of each member to the overall stiffness must be duly accounted for the sum of the 

average contribution of each element will lead to the final stiffness matrix. It is assumed that the 

elements are perfectly straight and present constant cross-sectional area. 

The elastic constant Cij can be transformed from one orthogonal cartesian coordinates system xi 

to another ix (i=1,2,3) through an expression: 
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QfQ kljiij α                                     (A3) 

 

where αn denotes the direction cosines of the transformation. Qij and ijQ are the elastic constant of 

systems x and x , respectively. The derivation of equation (A3) is presented in details in Nayfeh 

and Hefzy (1978). 

Equation (A3) is used in order to get the coefficients of equation (A2) for the corresponding 

cubic model of Figure 2.1a. Since all elements have the single unidirectional property E, each set of 

parallel bars will define a continuum with a single effective unidirectional property, which we shall 

refer to as Q11. In the context of effective modulus theories, Q11 will be an area-averaged modulus. 

Thus, the value of Q11 will depend not only upon the specific model under consideration but also 

upon the spacing of the bars. 

In particular, the cubic array shown in Figure 2.1a has two different properties of Q11, one 

corresponds to the elements normal to the face of the cube ( ), and the other corresponds to the 

diagonal elements ( Q ).  

nQ11

d
11

The unidirectional effective properties  and  can be determined by referring to the 

projected area normal to each element in order to obtain the effective area. For the normal elements 

we can obtain an effective area equal to L

nQ11
dQ11

2/2 while for the diagonal elements it results 3/2L . Thus, 

the unidirectional property for each element is given by: 
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211
3
L
EA

Q dd =                                                           (A5) 

 

in which L is the side length of the basic cube and EAn and EAd are Young’s modulus E times the 

cross-sectional area A for the normal and diagonal elements, respectively. 

From equations (A4) and (A5), ijQ  of equation (A3), that is, the stiffness matrix of a continuum 

equivalent to the cubic lattice model may be obtained. As shown in Figure 2.1a, seven elements 

converge to each node of the cubic model (3 normal and 4 diagonals bars), hence matrix ijQ can  be 

expressed as follows: 
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in which  and  are the direction cosines of the systems n
Iklα d

Jklα x ,  and n
Ix x ,  respectively. d

Jx

Combining equations (A4), (A5) and (A6), the elastic constants of equation (A2) can be 

obtained: 

 

)
9
4(

)
9
4(

)
9
41(

1144

1112

1111

δ

δ

δ

n

n

n

QC

QC

QC

=

=

+=

                                                       (A7) 

 

where 
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Therefore, the matrix Cij of equation. (A2) is: 
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The engineering elastic constants, Young’s modulus E, Poisson’s ratio ν and shear modulus µ  

may  be expressed in terms  of the constants Cij using the general stress-strain relations for 

anisotropic materials (Nayfeh and Hefzy, 1978), as follows: 
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Substituting in equation (A9), we  obtain: 
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To get the equivalent values of EAn and EAd as functions of the elastic properties of the material 

(which could be, for instance, E and ν ), we use equation (A11) and the relation given in equation 

(A8), as follows: 
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Finally, the equivalent stiffness of the normal and diagonal elements is obtained dividing 

equations (A12a,b) by the length of the respective element, being Ln=L (for normal elements) and 

LLd 2
3

=  (for diagonal elements):  
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The nodal masses, mi, are calculated in terms of the volumes of influence of each node i, for the 

internal nodes it results: 

 

2
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ρ
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while for surface nodes, linear corner and point corner nodes, the mass given by equation (A14) 

must be divided by 2, 4 and 8 respectively. 
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