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[1] As there is no evidence that cracks are created directly in modes II and III, shear
cracks probably occur only along a weakness plane, as in a preexisting fault. Mode I
fracture therefore may be an important factor in crack formation during shallow
earthquakes. A three-dimensional shear dynamic rupture process was simulated on the
assumption that shear slip occurs only in a preexisting fault and the possibility of
introducing new internal cracks that propagate under tensile stress as a consequence of the
dynamic process of shear slip propagation. The discrete element method (DEM) was used
to solve this problem because it can introduce internal tensile cracks. The simple slip-
weakening model was used as the friction law on the preexisting fault for shear rupture
propagation. For new tensile cracks, fracture follows classical Griffith theory when the
critical value for tensile fracture surface energy is reached. The proposed model was used
to simulate the rupture process of a strike-slip shallow fault. Results show that the
generation of new cracks is affected by rupture directivity in terms of the hypocenter and
asperity location as well as by fault geometry with respect to the free surface. Cracks
develop a flower-like structure that surrounds the preexisting fault. When the asperity is
located at less than a certain depth, the flower-like structure that originates from the top of
the fault reaches the free surface. We consider that this is the mechanism for forming
the flower structure near surface during a strike-slip shallow earthquake. INDEX TERMS:
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1. Introduction

[2] Dynamic simulation of rupture processes during
earthquakes usually is performed on the assumption that
only shear slip (Mode II and/or III) occurs [e.g., Andrews,
1976; Day, 1982; Olsen et al., 1997; Fukuyama and
Madariaga, 1998; Harris and Day, 1999]. This is widely
accepted in earthquake research because this phenomenon
is considered a dynamically running shear crack [e.g.,
Scholz, 1990]. The rupture process of an earthquake,
however, is known to involve superposition of the three
basic modes (modes I, II and III) of dynamic fracture
mechanics [e.g., Atkinson, 1987]. Certainly, modes II and
III constitute the most important mechanism for generating
seismic energy, ground motion, and shaking. For crack
formation, because there is no evidence that natural faults
appear directly under shear slip conditions, mode I may be

a very important factor, especially in low-pressure zones
like those in shallow earthquakes. In fact, laboratory
findings indicate that a large number of tensile (mode I)
microcracks are generated during shear slipping [e.g., Cox
and Scholz, 1988; Moore and Lockner, 1995; Anders and
Wiltschko, 1994; Petit and Barquins, 1988]. Numerical and
field investigations of brittle faults by Vermilye and Scholz
[1998] show that tensile microcrack zones occur within the
volume of rock surrounding the fault tip. Such a zone may
form before, during, or after growth of the shear plane.
These findings for laboratory-induced shear fractures [e.g.,
Cox and Scholz, 1988], as well as for field investigations
[e.g., Vermilye and Scholz, 1998], suggest that, unlike
tensile fractures, low-pressure shear fractures do not grow
by simple propagation within their own planes. Instead,
they propagate by a complex breakdown process involving
the interaction and coalescence of mode I microfractures.
This idea comes from Scholz [1968] and Lajtai [1971],
who concluded that shear cracks develop as a plane of
shear failure only after a long history of tensile micro-

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B3, 2144, doi:10.1029/2001JB001738, 2003

Copyright 2003 by the American Geophysical Union.
0148-0227/03/2001JB001738$09.00

ESE 3 - 1



fracturing. Interim steps include formation of individual
tensile microcracks, the propagation and linkage of these
cracks, and finally large-scale shear failure. Shear rupture
is considered to propagate only along a weakness plane,
such as a preexisting fault [Scholz, 1990].
[3] Considering the preceding laboratory and field find-

ings, the numerical simulation of the dynamic rupture
process in an earthquake involving the three basic modes
(modes I, II and III) implies the assumption a preexisting
fault for development of shear cracks and tensile stress
concentrations resulting from slip on this fault cause mode I
cracks that propagate away from the fault. A few numerical
simulations that introduced tensile cracking during dynamic
shear rupture have been reported. Yamashita [2000] used a
2-D finite difference formulation to investigate numerically
the generation of tensile microcracks by dynamic shear
rupture. In his model, microcracks always are separated
by a fixed distance and are parallel locally. His simulation
consists of a concentration of a swarm of cracks. These
assumptions, however, do not allow for the linking between
cracks to forms a new crack surface. Vermilye and Scholz
[1998] and Reches and Lockner [1994] used quasi-static
analyses to study the generation of microcracks but only
inferred the orientation of microcracks from their analyses
of quasi-static tensile stresses.
[4] We have used a 3-D numerical model to simulate the

propagation of new tensile cracks as the consequence of
spontaneous shear dynamic rupture along a preexisting
fault. The discrete element method (DEM), which models
any orthotropic elastic solid, was used. The modeled region
is represented by means of a three dimensional periodic
truss-like structure with cubic elements interconnected by
unidimensional bars with lumped nodal masses (Figure 1).
It was successfully used to simulate the dynamic shear
rupture process of the 1999 Chi-chi (Taiwan) earthquake
with a simplified 2-D model [Dalguer et al., 2001a, 2001b].
For 3-D problems, Dalguer et al. [2002] calculated the
dynamic shear stress changes during the rupture process of
the 2000 Tottori earthquake, using the distribution of the
fault slip and rupture time obtained from the inversion of
strong motion waveforms. Detailed information on the
DEM and its application to various 2-D dynamic problems
related to the rupture process of an earthquake is described
by Dalguer [2000]. The advantage of the DEM over the
finite element method (FEM), boundary integral element
method (BIEM), and finite difference method (FDM) is the
ease of introducing internal tensile cracks with little com-
putational effort and without increasing the number of
degrees of freedom of the system.
[5] Our aim was to investigate numerically the formation

of new cracks in the regions surrounding the source fault
during an earthquake in a 3-D strike-slip shallow fault. The
assumed preexisting fault, in which shear rupture propaga-
tion occurs, is embedded at a depth near the free surface. We
show that new tensile cracks generated by the dynamic
growth of shear rupture develop a flower-like structure that
surrounds the preexisting fault and that some cracks reach
the free surface.
[6] For shear rupture propagation, a simple slip-weaken-

ing model was used as the friction law on the preexisting
fault. For new tensile cracks, however, fracture follows the
classical linear elastic fracture mechanics (LEFM) theory

[Griffith, 1920] when the critical value of tensile fracture
surface energy is reached.

2. Formulation of the Discrete Element
Method (DEM)

[7] The DEM was used to simulate 3-D dynamic shear
rupture along a preexisting fault. In previous publications
[e.g., Dalguer et al., 2001a, 2001b] this model was used to
solve only 2-D problems. An attractive feature of the
proposed approach, however, is the possibility of account-
ing for the development of internal tensile cracks during
shear slipping along the preexisting fault with little compu-
tation and without increasing the number of degrees of
freedom of the system. It was successfully applied to a 2-D
mode I dynamic crack propagation problem by Riera and
Rocha [1991], who correctly predicted the propagation
velocity of tensile cracks without shear slipping.
[8] In our DEM formulation, orthotropic solids are rep-

resented by a three dimensional periodic truss-like structure
that has cubic elements (Figure 1). This model is based on
developments in aeronautical engineering, in which, for
purposes of structural analysis, it often is necessary to
establish the equivalence between truss-like structural sys-
tems and a continuous medium. Nayfeh and Hefsy [1978]
established the equivalence requirements between a cubic
arrangement (Figure 1) and an orthotropic elastic medium.
As Figure 1 shows, solids are represented by an array of

Figure 1. Numerical model used for the dynamic simula-
tion (DEM). (a) Basic cubic module, (b) prismatic body
generated for the 3-D model, and (c) representation of a
plane strain state (no z displacements) for the 2-D model.
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normal and diagonal bars linking lumped nodal masses. In
an isotropic elastic material, the cross-sectional axial stiff-
nesses of the longitudinal and diagonal bars in the equiv-
alent discrete model (Figure 1) are given by [e.g., Dalguer
et al., 2001b]

AEn ¼ fE�x2 ð1Þ

with bar length of �x and

AEd ¼ 2dfE
�x2ffiffiffi
3

p ð2Þ

with bar length of
ffiffiffi
3

p
(�x/2), respectively, where for

approximately isotropic solids; i.e., solids with equal
stiffness in the three orthogonal directions, f = (9 + 8d)/
(18 + 24d), d = 9n(4–8n), n is the Poisson’s ratio and E is
the Young’s module of the material.
[9] Uniaxial elastic forces, Fe, that act along the bars are

computed by means of the cross-sectional axial stiffness
given by equation (1) or (2)

Fej ¼ AEjej; ð3Þ

where e is the axial deformation of the bar j ( j = n or d, the
normal or diagonal bars, respectively).
[10] Representation of the elastic forces in the form given

by equation (3) is very convenient for simulating tensile
cracks, as explained later. Dynamic analysis was performed
by means of an explicit numerical integration in the time
domain. At each step of integration the nodal equilibrium,
represented by equation (4), is solved by the central finite
differences scheme:

m�ui þ c _ui ¼ fi; ð4Þ

where m denotes the nodal mass, c the damping constant, _ui
and üi are components of the velocity and acceleration
vectors, respectively, and fi is a component of the resultant
forces at one nodal point that include elastic, external, and
frictional forces in the direction i of motion. In the current
model, only those nodal points that coincide with the
preexisting fault, once it breaks, are under frictional force
governed by any predefined friction law. The damping
constant, c, was assumed to be proportional to the rigidity,
k, of the bars of each cubic element; i.e., c = df k, where df
was assumed to be 0.005. It is a critical damping ratio (x)
approximately less or equal to 0.045.

3. Friction Law on the Fault With Dynamic
Shear Crack Propagation

[11] As stated, shear rupture propagates only along a
weakness zone and involves sliding with friction. In our
model, this zone is defined as a preexisting fault, in which
only shear slip, governed by a friction law, takes place. We
adopted the simple slip-weakening friction model in the form
given by Andrews [1976]. This friction law, first proposed by
Ida [1972], is used extensively for the dynamic simulation of
fault rupture processes [e.g., Day, 1982; Olsen et al., 1997;
Fukuyama and Madariaga, 1998; Harris and Day, 1999;
Dalguer et al., 2001a, 2001b]. In addition to providing a
plausible model for shear dynamic rupture propagation, its

use is supported by experimental laboratory findings for
sliding friction on rock [e.g., Ohnaka et al., 1987].
[12] The slip-weakening friction model is represented

schematically in Figure 2. The shear force calculated from
the resultant force, fi, in equation (4) can be expressed by
the shear stress, t. The relationship between the shear stress,
t, and the slip of the fault, u, is expressed by

t < tu u ¼ 0

t ¼ � tu � tf
Dc

uþ tu 0 < u < Dc

tf u � Dc

(
ð5Þ

where tu is the critical stress or upper yield point, tf is the
final stress or residual stress considered as the dynamic
friction stress level, and Dc is the slip required for stress to
drop to its dynamic friction level. We assume there is no
back slip on the fault, therefore the slip velocity is always
greater or equal to zero.
[13] On the basis of this formulation, the validity of the

DEM to simulate shear dynamic rupture processes in 2-D
has been demonstrated by Dalguer et al. [2001b] in con-
nection with spontaneous in-plane rupture with the slip-
weakening law analyzed by Andrews [1976]. The results are
consistent with the solution presented by Andrews [1976].
The validity of the DEM approach for the 3-D problem is
further discussed in Appendix A. Three problems previ-
ously analyzed by Madariaga et al. [1998] were solved:
first, a circular shear fault that breaks instantaneously and
does not propagate; second, spontaneous growth of rupture
initiated from a circular asperity, which does not stop; and
third, spontaneous growth of rupture on a finite circular
fault. All the features of these dynamic rupture problems
reported by Madariaga et al. [1998] are closely reproduced
by the DEM. The dynamic rupture problems analyzed to
verify the adequacy of the DEM for the 2-D [Dalguer et al.,
2001b] and 3-D models (see Appendix A) are consistent
with the solutions presented in the specialized literature.
The 2-D and 3-D DEM models are thus shown to be
effective for studying spontaneous rupture propagation in
a fault embedded in an elastic medium.

4. Constitutive Relationship for the Tensile
Crack Propagation

[14] The behavior of uniaxial tensile stress-strain in rock
[e.g., Atkinson, 1987] shows strain softening after peak

Figure 2. Slip-weakening friction model.
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stress has been reached. Therefore the constitutive model
for pure mode I is stress versus crack-opening displacement
(Figure 3a), obtained from the displacement-controlled
direct tension test [Atkinson, 1987]. A material behaving
in this manner would show gradual damage zone develop-
ment (shown schematically in Figure 3b). This is related to
the critical tensile fracture energy, GIc, of linear elastic
fracture mechanics (LEFM), which has its roots in Griffith’s
energy balance concept. Therefore extension of a fracture
occurs once GIc has been reached or exceeded. From Figure
3a, the critical fracture energy, GIc, is

GIc ¼
ZUc

0

s Uð ÞdU : ð6Þ

Use of DEM models, representations of elastic solids using
discrete masses interconnected by unidimensional elements,
is very convenient for simulating tensile cracking with the
features shown in Figure 3. The constitutive relationship for
the tensile stress-strain adopted for each bar element of the
DEM is shown in Figure 4a. The loading-unloading path of
the stress on each bar is shown in Figure 4b. A similar
model was used successfully by Riera and Rocha [1991] to
solve dynamic tensile crack propagation in 2-D problems.
Because the stress and strain are in one-dimensional
formulation, the critical tensile stress, sc, was derived from
equation (3) or directly from Figure 4a as

sc ¼ Eep; ð7Þ

where ep is the maximum elastic strain.
[15] From equation (6) and Figure 3, the critical fracture

energy, GIc, for the DEM is the area of the inelastic zone of
the stress-strain relationship shown in Figure 4a. Equation
(7) gives

GIc ¼
1

2
Ee2p�x kr � 1ð Þ; ð8Þ

where �x is the length of the element bar (grid size of the
DEM.) and kr = er/ep, shown in Figure 4a, is the coefficient
that defines strain softening after the peak stress has been
reached until the crack totally opens. The critical tensile

stress, sc, is calculated by use of a modified form of the
classical Griffith equation [Griffith, 1920]

sc ffi
ffiffiffiffiffiffiffiffiffiffi
EGIc

pc

r
; ð9Þ

where 2c is the preexisting crack length. For a crack in a
linear elastic solid, GIc is expressed in terms of the critical
stress intensity factor, KIc, in mode I. On the basis of
Griffith’s energy balance concept, it follows that

GIc ¼
K2
Ic 1� n2ð Þ

E
: ð10Þ

From equations (9) and (10), the critical stress intensity
factor, KIc, is

Klc ¼ csc
ffiffiffi
L

p
: ð11Þ

In the problem under consideration, L is the length of the
preexisting fault and c a nondimensional factor that
depends on the geometry and grid size of the DEM.
Equations (7), (10), and (11) verify that

ep ¼
1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GIc

1� n2ð ÞLE

s
: ð12Þ

Figure 3. (a) Stress versus crack-opening displacement relationship obtained from a displacement-
controlled, direct tension test [Atkinson, 1987]. (b) Schematic view of the hypothesized process zone
[Atkinson, 1987].

Figure 4. (a) Constitutive relationship for tensile crack
generation used in the DEM. (b) The loading-unloading
path of the stress on each bar.
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The nondimensional factor, c, is estimated by combining
equations (8) and (12), giving

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr � 1ð Þ�x

2 1� n2ð ÞL

s
kr > 1: ð13Þ

For the tensile crack propagation formulation given above,
two parameters from a set of alternatives need to be
previously defined; the critical tensile stress intensity factor,
KIc, (or the critical tensile fracture energy, GIc), and the kr
coefficient.
[16] The proof of this formulation using the DEM is

presented in Appendix B, for which purpose we solve the
response of a rectangular plate in plane strain condition with
an initial symmetrical crack [e.g., Broek, 1989]. This is a
theoretical problem of Linear Elastic Fracture Mechanics
(LEFM).

5. Generation of Tensile Cracks by Spontaneous
Growth of Shear Rupture

[17] Numerical shear rupture simulation was obtained
for near-field elastodynamic motion coupled to frictional
sliding on a preexisting fault. Initially the stress distribu-
tion along the fault is at the initial stress level, and
rupture starts artificially by imposing a stress drop in a
limited small region, leading to stress accumulation along
the fault that increase monotonically without relative
slipping. Eventually, the interface shear stress (t) at a
point exceeds the local shear strength (critical stress level,
tu) and slip at a node occurs, governed by the slip-
weakening model represented by equation (5). Because
seismic radiation and slip depend only on the stress
change (stress drop) during the earthquake, not on the
absolute stress, the initial stress (t0) over the entire fault
is assumed to be zero. The parameters required to
simulate the rupture process governed by the slip-weak-
ening friction model therefore are the strength excess,
stress drop, and critical slip.
[18] For the numerical tensile rupture simulation, tensile

stress concentrations resulting from the shear slip on the
preexisting fault were assumed to cause the cracks in mode I
that propagate away from that fault. Extension of a fracture
occurs once the critical tensile fracture energy, GIc, is
reached or exceeded. Tensile fracture is governed by the
constitutive relation for tensile stress-strain (Figure 4). Steps
include the formation of individual microcracks, their prop-
agation, and the linking of these cracks. In essence this is
the mechanism for the generation of mode I cracks used in
our formulation.
[19] The background stress distribution over the entire

field is zero (uniform). Certainly this is not realistic, a
triaxial tectonic stress field as a function of depth should
be a better representation of the problem. The introduc-
tion of tectonic stress, however, implies uncertainty in
the level of stress distribution in the field, presently
unknown. Because we studied the formation of cracks
near the free surface, where the prestress field becomes
low, under this condition, we could assume that the
dynamic stress created by shear rupture would be dom-
inant over the background stress. The formation and

possible patterns of the simulated cracks are due to the
directivity of the dynamic stress created by the rupture
process.

5.1. Two-Dimensional Simulation

[20] Spontaneous in-plane rupture in the plane strain
condition is simulated. The preexisting fault has the length
L = 85 km. Fault movement is assumed to be right-lateral
slip. Dynamic parameters for shear slipping, which are
constant along the fault, are stress drop �t = 10 MPa,
strength excess is 5.0 MPa, and critical slip Dc = 0.5 m.
Rupture propagates bilaterally from the center of the fault
with the stress drop constant everywhere along the shear
crack plane. For generation of the tensile cracks, the critical
fracture energy in mode I is assumed to be GIc = 5 	 105 J/
m2 and the coefficient kr = 1.5.
[21] A homogeneous medium is assumed with a P wave

velocity of 6.1 km/s, S wave velocity of 3.5 km/s, and
density of 2700 kg/m3. It corresponds to a Young’s modulus
of 8.37 	 1010 N/m2, a shear modulus of 3.35 	 1010 N/m2

and a Poisson’s ratio of 0.25. The numerical model consists
of cubic cells with sides �x = 0.5 km long. A time step of
0.05 s is used for the numerical integration of the equation
of motion.
[22] Generation of the tensile cracks in the 2-D in-plane

problem is shown in the snapshots every second for 16 s
(Figure 5). The tensile cracks expand as shear rupture grows
and propagate from the tip of the shear crack. A large
number of cracks are generated, as expected, mainly on the
dilatation side. The dilatation and compression sides are
specified by the positive ( plus) and negative (minus) signs,
respectively, as shown in the last snapshot of Figure 5.
Lengths of the new cracks increase gradually from the
origin (hypocenter) to the end of the fault. At the end of

Figure 5. Snapshots (1 to 16 s) taken of shear rupture
progress and the generation of tensile cracks. The horizontal
solid line represents the shear crack, and irregular lines that
leave the straight line represent tensile cracks.
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the preexisting fault the tensile cracks extend for long
distances and form branches. The final stage of crack
formation is consistent with that observed in the laboratory
[e.g., Petit and Barquins, 1988], as well as with numerical

analysis and field observations [e.g., Vermilye and Scholz,
1998].

5.2. Three-Dimensional Simulation

[23] The formation of new cracks and how they reach the
free surface during an earthquake was investigated numeri-
cally in a 3-D model of a strike-slip shallow fault.
[24] To visualize the path of new cracks without inter-

ference by the free surface, the rupture process of a fault
embedded in unbounded medium with no free surface
first was simulated. The geometry of the fault model is
shown in Figure 6. The hypocenter is located in the
middle of the fault. Fault movement is assumed to be
right-lateral slip. The dynamic parameters for shear slip-
ping are constant along the fault (stress drop �t =
9 MPa, strength excess is 2.0 MPa and critical slip
Dc = 0.2 m). The medium is characterized by a P wave
velocity of 6.1 km/s, S wave velocity of 3.5 km/s, and
density of 2700 kg/m3. This is called the ‘‘homogeneous
model.’’ The numerical model is constructed using cubic
cells having 0.5 km long sides. A time step of 0.05 s was
used in the numerical integration of the equation of
motion.

Figure 6. Homogeneous fault embedded in an unbounded
medium with no free surface and the parameter distributions
used in the 3-D dynamic simulation.

Figure 7. Two perspectives of the final stage of the crack evolution for a homogeneous fault model
embedded in an unbounded medium with no free surface. Red denotes the shear crack on the preexisting
fault, and blue denotes tensile cracks. (a) View of new surface cracks that grew from the sides of the fault
and (b) view of new surface cracks forming flower-like structures that originated from the bottom and top
boundaries of the fault. See color version of this figure at back of this issue.
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[25] For generating of the tensile cracks, a critical fracture
energy in mode I, GI c = 5 	 105 J/m2, and a coefficient kr =
1.5 are assumed. These parameters were chosen to control
the number of tensile cracks and to produce a clear crack
formation pattern. For very low GIc values, the medium
around the preexisting fault would be completely filled with
cracks, making it difficult to distinguish the crack pattern. In
contrast, at very high values no cracks would be generated.
Some authors [e.g., Atkinson, 1987] suggest that GIc could
be 1/10 to 1/100 smaller than the shear fracture energy. We
tried to maintain this interval.
[26] Results for a homogeneous fault model embedded

in an unbounded medium are given in Figures 7 to 9.
Figure 7 shows two views of the final stage of the new
cracks, in which new tensile cracks have grown, from the
ends of the preexisting fault, forming very well defined
new fractures with a flower-like structure. Figures 8a and
8c show a bird’s-eye and an outline view of the fault,
respectively, indicative that the orientation of the new
cracks related to the two sides of the preexisting fault is
asymmetric for the in-plane direction (mode II, Figure 8a)
and symmetric for the antiplane (mode III, Figure 8c).
Details of the characteristics of these cracks are seen in
the vertical cross sections (VS1, VS2, and VS3) and the
horizontal section (SH1) in Figure 9a. The location of
these sections is given in Figure 8. In the horizontal
section (SH1), which corresponds to the middle of the
fault, the cracks have grown on the dilatational side of the
in-plane direction. The vertical cross sections show that
cracks are generated in the dilatation and compression
sides of the fault, forming surfaces of cracks with a

flower-like structure pattern. As shown in cross sections
SV1 and SV3, three new surfaces are generated from the
top and bottom of the fault; two grow from the two sides
(dilatation and compression) of the fault toward its exte-
rior domain and the other (only in the dilatation side)
toward the interior domain of the fault. Crack length is
longer in the dilatation than in the compression zone, the
longest corresponding to cracks that grow toward the
interior domain of the fault.
[27] On the basis of these results, tensile rupture patterns

appear to grow only at angles of 45
 and �45
. This
suggests that maximum tensile stress occurs in this zone.
Details of cracks generated in the numerical model are
shown in Figure 9b. The geometrical form and grid size
of each DEM element may constitute a limitation such that
no cracks grow at any other angles.
[28] We next studied the free surface and the hypocenter

location effects on the generation of tensile cracks. In the
homogeneous model, the preexisting fault is embedded at a
depth of 3 km from the free surface (Figure 10). Three
cases, in which the hypocenter is located in the lower,
middle, or upper part of the fault, were analyzed, called
models M1, M2, and M3, respectively.
[29] Simulation results for these three cases (M1, M2,

and M3) are given in Figures 11 to 14. Figure 11
presents two views of the final stage of the new cracks
in all the cases. Figure 11a shows that in all of them the
new crack surfaces that grew from the sides of the fault
have similar characteristics, even in the fault model
embedded in unbounded medium (Figure 7a). In contrast,
Figure 11b shows that the new cracks were generated
from the bottom and top boundaries of the fault, depend-
ing on the hypocenter’s location. When compared with the
fault model embedded in unbounded medium (Figure 7b),
cracks originating from the top of the fault have a
different pattern evolution, clearly showing the free sur-
face effect on crack generation. These characteristics also
can be seen in Figures 12a and 12c, which show a bird’s-
eye and an outline view of the fault, respectively. Details
of the generation of cracks from the top and bottom of
the fault are shown in the vertical cross sections VS1,
VS2, and VS3 in Figure 13. The location of these
sections is specified in Figure 12a. Figure 13 shows that
the pattern of the new cracks (flower-like structures) that
are formed from the top of the fault (near the free
surface) differs from the pattern formed at the bottom.
At the top of the fault, in the strike direction, two
surfaces are generated symmetrically from the border of
the two sides of the fault toward the free surface. At the
bottom of the fault, new surfaces are generated as in the
fault model with no free surface (Figure 9a). Evolution of
cracks emanating from the bottom of the fault clearly is
affected by the rupture directivity related to the hypo-
center location, i.e., the farther the hypocenter from the
border of the fault the longer the length of the crack. On
the other hand, cracks that developed from the top of the
fault are affected mainly by the free surface. In all
the cases, the cracks reach the free surface. Apparently,
the free surface causes an increase in the lengths of the
cracks, as suggested when models M1 and M3 are
compared. If there are no free-surface effects, the cracks
on the top of the fault in model M3 should be equal to

Figure 8. Views of the final stages of the crack evolution
for a homogeneous fault model embedded in an unbounded
medium with no free surface. (a) Bird’s-eye view, (b) frontal
view (V1), and (c) outline view (V2). See color version of
this figure at back of this issue.
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those in the bottom of the fault in model M1. Another
effect of the free surface is that cracks that originated at
the border of the fault and propagated toward the interior
domain, as seen in the fault model with no free surface
(Figure 9a), cease to develop.
[30] Horizontal section SH1 in Figure 14, which corres-

ponds to the middle of the fault, as specified in Figures
12b and 12c, does not show any significant change
between the cases. However, comparison of the surface
rupture paths for model M3 with the path for models M1
and M2 shows marked differences. In models M1 and
M2, cracks reach the free surface by forming a closed
path around the trace of the fault; whereas in model M3
only two segments, which parallel the trace of the fault,
are formed.
[31] A fault with an asperity embedded in a stratified

medium (Figure 15) was used to analyze a more realistic
earthquake source. An asperity was assumed to be a zone
with a higher stress drop than the surrounding areas. The
dynamic parameters for shear slipping are as follows: for

Figure 9. (a) Vertical, VS1, VS2, VS3, and horizontal, HS1, cross sections of the final stages of crack
evolution in the homogeneous fault model embedded in an unbounded medium with no free surface.
Section locations are given in Figure 8. The thick solid line represents the shear crack, and the irregular
lines that leave it represent tensile cracks. Dilatation and compression sides are specified by positive
(plus) and negative (minus) signs, respectively. (b) Schematic representation of the cracks generated in
the numerical model, DEM, used for the dynamic simulation.

Figure 10. Homogeneous model for a preexisting fault
embedded 3 km below the free surface and the parameter
distributions used for the 3-D dynamic simulation. The stars
represent hypocenter locations for the three cases, M1, M2,
and M3.
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Figure 11. Perspectives of the final stage of the crack evolution for the homogeneous fault models (M1,
M2, and M3) embedded 3 km below the free surface (a) View of new surface cracks that grew from the
sides of the fault and (b) view of new surface cracks forming flower-like structures that originated from
the bottom and top boundaries of the fault. See color version of this figure at back of this issue.
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Figure 12. Views of the final stage of crack evolution for the homogeneous fault models (M1, M2, and
M3) embedded 3 km below the free surface. (a) Bird’s eye view, (b) frontal view (V1), and (c) outline
view (V2). See color version of this figure at back of this issue.
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Figure 13. Vertical cross sections (VS1, VS2, and VS3) for the homogeneous fault models (M1, M2,
and M3) embedded 3 km below the free surface. The location of these sections is specified in Figure 12a.

DALGUER ET AL.: SHEAR AND TENSILE CRACKS DURING EARTHQUAKE ESE 3 - 11



Figure 14. Horizontal cross section HS1 and surface rupture for the homogeneous fault models (M1,
M2, and M3) embedded 3 km below the free surface. The sections HS1 are specified in Figure 12b.
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the asperity area the stress drop �t = 18 MPa, strength
excess of 3.0 MPa, and critical slip Dc = 0.5 m are
assumed, and surrounding the asperity, the stress drop is
�t = 2.5 MPa, strength excess of 3.0 MPa, and critical
slip Dc = 0.15 m. For tensile crack generation, the same
values as those in the homogeneous model are assumed.
The velocity structure of the medium is shown in Table 1.
This model is called the ‘‘asperity model’’. To study the
effects of the asperity location on the propagation of new
cracks, four cases with different asperity depths were
simulated. In these models the values for distance H,
from the top boundary of the fault to the top boundary of
the asperity area, (see Figure 15) are H = 4.0, 3.0, 2.0,
and 1.5 km.
[32] Simulations of new cracks corresponding to the

asperity model for these four cases are shown in Figures
16 to 22. Bird’s-eye, frontal, and side views of the
preexisting fault are shown in Figures 16 to 19 for the
models with H = 4.0, 3.0, 2.0, and 1.5 km, respectively.
Figures 16–19 give a general view of the cracks. As seen
previously in the homogeneous model, in the asperity
models cracks also develop asymmetrically in the in-plane
direction (mode II) and symmetrically in the antiplane
(mode III). The frontal views (Figures 16b to 19b) show
a concentration of cracks in the vicinity of the asperity
zone. In general, all four cases have the same character-
istics; cracks grow mainly from the borders of the
asperity zone and from the top and lateral sides of the
fault. No significant cracking occurs along the lower
edge, unlike in the findings for the homogeneous model.
This is due to the fact that the stress drop in the
homogeneous model is greater than that in the area
surrounding the asperity.
[33] Figure 20 shows vertical cross sections VS1, VS2,

and VS3 for the four cases, for which locations are given
in Figures 16a to 19a. The section along the middle of the

asperity (VS2), in all the models, shows that cracks,
which developed from the top of the fault and from the
top and bottom of the asperity, were generated symmetri-
cally on the two sides of the fault. In contrast, sections
located outside the asperity (VS1 and VS3) show gen-
eration of asymmetric cracks. Those cross sections outside
of the asperity show that the lowest cracks occurred at
corresponding depths as at the bottom of the asperity,
whereas the significant upper cracks originated only from
the top of the fault. Cracks that developed from the
bottom and top of the asperity have the same length in
all the models, as seen in section VS2. In contrast, the
lengths of cracks that originated from the top of the fault
(sections VS1, VS2 and VS3) and from the bottom part
outside the asperity (sections VS1 and VS3) increase as
the asperity approaches the top of the fault. This incre-
ment in length is small for the bottom cracks, but is very
large for the upper ones. The path of the asymmetric
cracks originated from the top of the fault (see sections
VS1 and VS2) is the same for the models in which H =
4.0, 3.0, and 2.0 km, but for H = 1.5 km the asymmetry
is inverted, possibly because the cracks that originated
from the top of the asperity in the model with H = 1.5 km
extended to a depth of �2.5 km, exceeding the level of
the top boundary of the fault, �3.0 km. Once cracks were
generated from the top of the asperity extend beyond the
top boundary of the fault, they and those generated from
the top of the fault advance in parallel. This phenomenon
may cause inversion of the increment of tensile stress on
the two sides of the fault. Consequently, the asymmetry of
the cracks that develop from the top of the fault also may
be inverted, as in the model with H = 1.5 km and seen in
sections VS1 and VS3.
[34] Our findings suggest that the effects of the asperity

on the generation of cracks originating from the top of the
fault increase as the asperity approaches the top. In the
models with H = 4.0 and 3.0 km, these effects are slight;
whereas in the models with H = 2.0 and 1.5 km they are
marked.
[35] Figure 21 shows horizontal cross sections at the

depths HS1, HS2 and at the free-surface rupture for the
four cases. Sections HS1, located in the middle of
the asperity (Figures 16b and 16c to 19b and 19c) in all
the models, have similar characteristics; new cracks extend
from the tip end of the fault and the tip end of the asperity
on the dilatational side of the preexisting shear fault.
Sections HS2, at 1.0 km below the free surface (shown
in Figures 18b and 18c to 19b and 19c) show cracks that
originated from the top of the fault in the models with
H = 2.0 and 1.5 km, whereas these cracks in the other two
models do not reach this level. The purpose of section
HS2 is to show the difference in crack extension in the
models with H = 2.0 and 1.5 km. The traces of these
cracks, 
2.5 km from the fault and parallel to the

Figure 15. Asperity model with a preexisting fault
embedded at a depth of 3 km from the free surface and
parameters distribution used for the 3-D dynamic simulation.

Table 1. Velocity Structure for the Asperity Model

Depth, km Vp, km/s Vs, km/s r, kg/m3

0–2.5 4.5 2.6 2400
2.5–20 6.0 3.5 2700
20–
 6.7 3.9 2800
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Figure 16. Views of the final stage of crack evolution for the asperity model (H = 4.0 km). (a) Bird’s-
eye view, (b) frontal view (V1), and (c) outline view (V2). See color version of this figure at back of
this issue.
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Figure 17. Views of the final stage of crack evolution for the asperity model (H = 3.0 km) (a) Bird’s-eye
view; (b) frontal view (V1); (c) outline view (V2). See color version of this figure at back of this issue.
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Figure 18. Views of the final stage of crack evolution for the asperity model (H = 2.0 km). (a)
Bird’s-eye view, (b) frontal view (V1), and (c) outline view (V2). See color version of this figure at
back of this issue.
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Figure 19. Views of the final stage of crack evolution for the asperity model (H = 1.5 km). (a)
Bird’s-eye view, (b) frontal view (V1), and (c) outline view (V2). See color version of this figure at
back of this issue.
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Figure 20. Vertical cross sections (VS1, VS2 and VS3) for the four cases of the asperity model. Section
locations are given in Figures 16a to 19a.
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preexisting fault, extend toward the dilatational side for
the model with H = 2.0 km, whereas in the model with
H = 1.5 km, crack extension is the opposite. As explained
before, this may occurs because the increment in tensile
stress at the top of the fault is inverted on the two sides.
This inversion probably is caused by the proximity of the
asperity to the top of the fault. Cracks that originate from
the asperity reach the top of the fault then propagate
parallel to the cracks that originated from the top of the
fault.
[36] Surface rupture (Figure 21) occurs only in the

models with H = 2.0 and 1.5 km. Cracks in the model with
H = 2.0 km reach the free surface in a small zone 
3.0 km
from the center of the trace of the preexisting fault. The
model with H = 1.5 km, however, generates a surface
rupture 6.5 km long on both sides of the fault. Under the
assumptions given in the problem, the minimum condition
for new cracks to reach the free surface seems to be that the
asperity must be between 2.0 and 1.5 km below the top of
the fault.
[37] Two perspectives of the final stage of the new cracks

for the model with H = 1.5 km are shown in Figure 22 to
provide a general view of these cracks. In Figure 22b the
surfaces of the new cracks form a flower-like structure on
top of the fault and on the bottom of the asperity. We
consider it is the mechanism of the flower structure near
surface during strike-slip shallow earthquake. On the lateral

sides of the fault and asperity, however, cracks develop only
on the dilatational side of the fault (Figure 22a).

6. Conclusions

[38] To our knowledge, this paper contains the first
numerical 3-D simulation of the generation of tensile cracks
by the dynamic shear rupture process along a preexisting
fault during an earthquake.
[39] Because the rupture process of an earthquake

involves a fracture dynamics problem, superposition of
the three basic modes of rupture (modes I, II, and III) is
required to describe the most general case of dynamic
rupture propagation. The assumptions that new cracks are
generated only by tension (mode I) and that shear sliding
(modes II and III) occurs only along a preexisting fault are
very well accounted for by the DEM.
[40] The 2-D simulation showed that tensile cracks

expand as shear rupture progresses and propagate from the
tip of the shear crack on the dilatational side of the fault.
Moreover, new cracks at the end of the preexisting fault
expand for long distances, and complex crack patterns are
formed. This phenomenon was successfully simulated for
the first time by numerical analysis (Figure 5).
[41] The 3-D simulation showed that cracks generated

by shear slipping mainly propagate from the borders of the
preexisting fault and asperity borders and form a flower-

Figure 21. Horizontal cross sections (HS1 and HS2) and surface rupture for the four cases of the
asperity model. HS1 sections are given in Figure 16b and 16c to 19b and 19c for each case. HS2 sections
are specified in Figures 18b and 18c and 19b and 19c for H = 2.0 and 1.5 km, respectively.
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like structure. We consider this to be the mechanism that
produces the flower structure near surface. The free sur-
face and variations in hypocenter and asperity locations
with depth markedly affect the cracks generated from the
border of the fault and the free-surface rupture. The flower
structures that originate from the top of the fault mainly
are affected by the fault geometry with respect to the free
surface, whereas those originating from the bottom mainly
are affected by rupture directivity about the hypocenter
location. This is interesting because even though the geo-
logical situation, such as the confining pressure dependent
on depth, in which the pressure becomes low and the
ground may be easy to break closer to the surface, is not
include in our simulation, the free-surface effect was
significant for creating this flower structure. This suggests
that in a real situation, the dynamic stress created by shear
rupture near the free surface could predominate over
background stress, as assumed in the model described
here.
[42] Whether the simulation is consistent with real earth-

quake behavior is still a question. During field observations
reported by Fusejima et al. [2000] after the 2000 Tottori
(Japan) earthquake, several small cracks were found on the
free surface parallel to the causative fault. The traces of
those cracks are similar to the ones shown in Figure 21 that
correspond to the asperity model for H = 1.5 km. The
seismic profiling from a reflection survey done in the 2000

Tottori (Japan) earthquake area and analyzed by Inoue et al.
[2001] suggests that the flower structure developed near the
free surface.
[43] Numerical analysis of the full dynamic rupture

process of an earthquake based on the DEM provided truly
encouraging results. The model and results we presented
show that the DEM can be used successfully to predict
fracture behavior during an earthquake and the formation of
fault zones.

Appendix A: Validity of the DEM for Simulating
a Shear Dynamic Rupture Process

[44] To verify the adequacy of the DEM to simulate a
dynamic rupture process in 3-D, three problems pre-
sented by Madariaga et al. [1998] were analyzed: a
circular shear fault that breaks instantaneously and does
not propagate; spontaneous growth of rupture initiated
from a circular asperity that does not stop; and sponta-
neous growth of rupture on a finite circular fault. The
slip-weakening model was adopted as a friction law of
the fault (equation (5) and Figure 2).

A1. Circular Shear Fault That Breaks
Instantaneously and Does Not Propagate

[45] This problem was approximated by Brune [1970]
and solved numerically assuming circular symmetry by

Figure 22. Two perspectives of the final stage of the crack evolution for an asperity fault model (H =
1.5 km). Red denotes the shear crack on the preexisting fault, and blue denotes tensile cracks. (a) View of
new surface cracks that grew from the sides of the fault and (b) view of new surface cracks forming
flower-like structures that originated from the bottom and top boundaries of the fault. See color version of
this figure at back of this issue.
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Madariaga [1976]. Madariaga et al. [1998] also used
this example to validate the finite diffenece method. In
this problem, the fault is assumed to appear instanta-
neously in the medium and rupture to occur instanta-
neously inside a circular fault of radius R. The geometry
of the problem is described in Figure A1, the circular
fault is on the x-y coordinate plane, and slip is allowed
only in the y direction; i.e., the x component of the slip
is zero. The fault is embedded in a infinite homogeneous,
isotropic elastic medium with a Poisson’s ratio of 0.25,
therefore a=b ¼

ffiffiffi
3

p
, where a is the P wave velocity and

b the S wave velocity. The problem is solved for b = 1,
a ¼

ffiffiffi
3

p
, density r = 1, rigidity m = 1, grid size �x = 1,

radius of the circular fault R = 11�x. A simple Coulomb
friction law is assumed along the fault, with a critical
slip of Dc = 0. The critical stress is tu = 1, and the
initial stress t0 = tu = 1. This means that the strength
excess is zero, therefore the fault is prestressed just
before rupture, and the stress decreases instantly to zero
at time t = 0. On the basis of these assumptions the
stress drop, �s, is 1 everywhere in the rupture zone.
Results are normalized by use of the scale of Madariaga
et al. [1998] in Table A1.

[46] Figures A2a and A2b show the slip function at
different points along the radius of the fault for the in-
plane direction ( y axis) and antiplane mode (x axis),
respectively. All the characteristics of the instantaneous
rupture circular shear fault reported by Madariaga et al.
[1998] are very well reproduced by the DEM. For
example, they explain that after 
20 time units, the slip
functions at the center of the fault show a break in slope
corresponding to the arrival of the P stopping phase.
After about 34 time units, the S stopping phase arrives,
during which the fault stops slipping. Solutions for the
in-plane and antiplane mode are similar but not exactly
equal, therefore there is no cylindrical symmetry around
the center of the fault.

A2. Spontaneous Growth of Rupture

[47] In this problem rupture initiates from a circular
asperity, propagates spontaneously and does not stop.
This example was solved by Madariaga et al. [1998]
using the FDM model. The geometry of the problem is
the same as that described in Figure A1. The radius of
the circular fault that breaks instantaneously is R =
10�x. The initial stress is t0 = 1.6tu inside and t0 =
0.5tu outside the asperity, and tu = 1.0. In this problem
the slip-weakening friction law is again used. In non-
dimensional units the critical slip is Dc = 4, and the
normalized units for all the variables are the same as in
the previous example. H = 0.35 is used for the normal-
ized time.
[48] Figure A3 shows results of the spontaneous

growth of rupture. The slip and stress distributions on
the fault, as functions of time and position along the in-
plane direction, respectively are shown in Figures A3a
and A3b. Figures A3c and A3d show the slip velocity

Table A1. Results Normalized by Use of the Scale of Madariaga

et al. [1998]

Parameter Description

Distance along the fault unit of �x (grid interval)
Time t0 = ta/(H�x) (H = 1.0)
Slip D0 = Dm/(2�x tu )
Slip velocity _D0 = _Dm/(2btu)
Stress: t0 = t/tu

Figure A2. Slip as a function of time for instantaneous
circular fault rupture solved by the DEM. Each curve
represents the slip function at a different point along a
radius of the fault. (a) Slip for the in-plane mode (along
the y axis) and (b) slip for the antiplane mode (along the
x axis).

Figure A1. Theoretical circular fault with the radius R.
The fault is on the x-y plane. Arrows show the direction of
the slip.
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and stress distributions, respectively, as functions of
position along the in-plane direction at the dimensionless
time t0 = 200. Again, all the properties of the sponta-
neous growth of rupture reported by Madariaga et al.
[1998] are closely reproduced by the DEM. For example,
the peak of shear stress on the rupture front and the
secondary peak associated with the S waves are very
precisely described by the DEM (Figures A3b and A3d).
This phenomenon originally was shown by Andrews
[1976].

A3. Spontaneous Rupture on a Finite Fault

[49] In this problem rupture initiates from a concentric
circular asperity and stops when it reaches the unbreak-
able boundary of a finite circular fault. This problem was
solved by Madariaga et al. [1998] using the FDM
model. The geometry coordinates of the problem are
the same as in Figure A1. The circular fault has the
radius R = 50�x. Rupture starts from a concentric
asperity with the radius r = 6�x. The slip weakening
friction law, with the critical slip Dc = 4, also is used.
The initial stress is t0 = 1.2tu inside the concentric
asperity and t0 = 0.8tu outside. Normalized units for all
the variables are the same as in the previous examples.

Simulation results are shown in snapshots of the slip
velocity (Figure A4). DEM results also are very similar
to those determined by Madariaga et al. [1998] with the
FDM. Rupture grows faster in the in-plane direction
which is dominated by mode II.

Appendix B: Validity of the DEM for
Simulating Tensile Cracks

[50] To determine the adequacy of the DEM for simulat-
ing tensile cracks, we analyzed a theoretical problem of
linear elastic fracture mechanics (LEFM). The response of a
rectangular plate in the plane strain condition with an initial
symmetrical crack [e.g., Broek, 1989] was solved. The
relation of the applied stress, s, and the stress intensity
factor, KI, for an arbitrary crack in an arbitrary body with
arbitrary mode I loading is

s ¼ KI

b
ffiffiffiffiffi
pc

p ; ðB1Þ

where c is the size of the crack and b a geometrical factor
(equivalent to c of equations (11) and (13)). For any crack

Figure A3. Numerical solution by the DEM of spontaneous growth of rupture, in which the rupture
initiates from a circular asperity, propagates spontaneously and does not stop. (a) and (b) Slip and stress
distributions, respectively, on the fault as functions of time and position along the in-plane direction. (c)
and (d) Slip velocity and stress distribution, respectively, as the function of position along the in-plane
direction at dimensionless time t0 = 200.
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in any practical problem only function b needs to be
derived. The b functions for some common crack cases are
given, for example, by Broek [1989].
[51] For our problem, a rectangular plate with an edge

crack c, width h, and length 2h pulled to fracture with a
tensile stress of s as shown in Figure B1, function b is

b ¼ 1:12� 0:23
c

h
þ 10:56

c

h

� �2

�21:74
c

h

� �3

þ 30:42
c

h

� �4

: ðB2Þ

For the given critical stress intensity factor, KIc, of any
material, the theoretical critical stress sc applied on the plate
can be calculated using equations (B1) and (B2).
[52] In this context, the DEM also can be used to

predict numerically the critical stress and to compare the
results with those obtained using equation (B1). This
problem previously was solved with the DEM by Riera
and Rocha [1991]; therefore their results are reproduced.
These authors used a plate of width h = 0.12 m, length
0.24 m, and KIc = 0.611 MPa

ffiffiffiffi
m

p
. The material property

was assumed to have a Young’s modulus of E = 3.0 	
1010 N/m2, a Poisson’s ratio of n = 0.25, and specific
mass of r = 2400 kg/m3. The grid size of the DEM was
�x = 0.01 m. Five numerical tests for different crack
sizes (c = 0.02, 0.03, 0.04, 0.05, and 0.06 m) were
performed.
[53] Figure B1 shows the applied critical stress, sc, for

the five tests calculated by the DEM. Values are compared
with the theoretical solution calculated by equation (B1).

Results are consistent with those for the theoretical
prediction.
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Figure 7. Two perspectives of the final stage of the crack evolution for a homogeneous fault model
embedded in an unbounded medium with no free surface. Red denotes the shear crack on the preexisting
fault, and blue denotes tensile cracks. (a) View of new surface cracks that grew from the sides of the fault
and (b) view of new surface cracks forming flower-like structures that originated from the bottom and top
boundaries of the fault.
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Figure 8. Views of the final stages of the crack evolution for a homogeneous fault model embedded in
an unbounded medium with no free surface. (a) Bird’s-eye view, (b) frontal view (V1), and (c) outline
view (V2).
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Figure 11. Perspectives of the final stage of the crack evolution for the homogeneous fault models (M1,
M2, and M3) embedded 3 km below the free surface (a) View of new surface cracks that grew from the
sides of the fault and (b) view of new surface cracks forming flower-like structures that originated from
the bottom and top boundaries of the fault.
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Figure 12. Views of the final stage of crack evolution for the homogeneous fault models (M1, M2, and
M3) embedded 3 km below the free surface. (a) Bird’s eye view, (b) frontal view (V1), and (c) outline
view (V2).
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Figure 16. Views of the final stage of crack evolution for the asperity model (H = 4.0 km). (a) Bird’s-
eye view, (b) frontal view (V1), and (c) outline view (V2).
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Figure 17. Views of the final stage of crack evolution for the asperity model (H = 3.0 km) (a) Bird’s-eye
view; (b) frontal view (V1); (c) outline view (V2).
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Figure 18. Views of the final stage of crack evolution for the asperity model (H = 2.0 km). (a) Bird’s-
eye view, (b) frontal view (V1), and (c) outline view (V2).
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Figure 19. Views of the final stage of crack evolution for the asperity model (H = 1.5 km). (a) Bird’s-
eye view, (b) frontal view (V1), and (c) outline view (V2).
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Figure 22. Two perspectives of the final stage of the crack evolution for an asperity fault model (H =
1.5 km). Red denotes the shear crack on the preexisting fault, and blue denotes tensile cracks. (a) View of
new surface cracks that grew from the sides of the fault and (b) view of new surface cracks forming
flower-like structures that originated from the bottom and top boundaries of the fault.
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